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Abstract 

 

Using a single integrated analysis, we examined the relationship between brain networks and 

molecular pathways in a cohort of elderly individuals at risk for Alzheimer's disease. In 205 subjective 

memory complainers (124 females, mean age: 75.7 ± 3.4), individual functional connectome was 

computed for a total of 3081 functional connections (set A) and 6 core plasma biomarkers of 

Alzheimer's disease (set B) were assessed. Partial least squares correlation analysis identified one 

dimension of population covariation between the 2 sets (p < 0.006), which we named bioneural mode. 

Five core plasma biomarkers and 190 functional connections presented bootstrap ratios greater than 

the critical value |1.96|. T-tau protein showed a trend toward significance (bootstrap resampling = 

1.64). The salience, the language, the visuospatial, and the default mode networks were the strongest 

significant networks. We detected a strong association between network dynamics and core 

pathophysiological blood biomarkers. Innovative composite biomarkers, such as the bioneural mode, 

are promising to provide outcomes and better inform drug development and clinical practice for 

neurodegenerative diseases. 

 



INTRODUCTION  

Complex chronic diseases such as cancer, systemic immune diseases, diabetes, and neurodegenerative 

diseases exhibit a multi-factorial nature that originates from complex interactions among 

(epi)genomics, regulatory mechanisms, interactomics, synaptic dynamics, and environmental factors 1–

3. Such diseases – including Alzheimer’s disease (AD) – may originate from progressive breakdown 

events (decompensation) occurring through molecular, cellular, synaptic, and large-scale brain 

networks 3. During the earliest preclinical stages of AD , adaptive responses and compensatory 

mechanisms may  be enhanced, thus preserving network functions and, ultimately, delaying 

progression to clinical onset 3–5.  

Due to AD complexity, single investigational techniques cannot capture the accumulative converging 

and diverging system decompensations and failures that occur during the disease progression. A multi-

modal approach seems more appropriate to elucidate the interaction between different AD-related 

pathophysiological mechanisms. In AD, genetic, age-related, and stressor-induced alterations lead to 

detrimental pathophysiological cascades, such as proteinopathies (i.e., misfolding and toxic 

accumulation of amyloid beta [Aβ] peptides and tau proteins), synaptic failure, loss of plasticity, 

neuroinflammation, immune-mediated responses, and neurodegeneration (i.e., neuronal dystrophy, 

cytoskeletal damage, and apoptosis) 3,6,7.  

The diagnostic value of Aβ plaque and tau neurofibrillary tangle accumulation has led to 

investigations on the question whether and how these pathological hallmarks may affect large-scale 

brain function at different stages of the disease. There is accumulating evidence that amyloid 

pathology, as assessed by positron emission tomography (PET), is associated with significant 

disruptions of default mode network (DMN) connectivity in asymptomatic individuals 10–13, mild 

cognitive impairment (MCI) individuals 10, and AD dementia patients 10–12. More recent studies 

investigated the relationship between functional network failure and cerebrospinal fluid (CSF) Aβ and 

tau concentrations 14–17. Findings converge in providing evidence of reduced DMN integrity associated 

with low CSF Aβ1-42 and high CSF tau concentrations 15,17. According to Jones and colleagues 14, brain 

amyloid may mediate the association between brain network dysfunction and tau deposition. Indexes 

of disease severity originating from graph theory metrics showed disrupted DMN functional 



connectivity in the presence of abnormal CSF biomarkers, suggesting that asymptomatic individuals at 

risk of AD may exhibit a milder AD network phenotype 16. Besides these advances, little is known 

about the relationship between other molecular mechanisms and brain functional dynamics. 

Addressing these questions will reveal the true complexity of brain endophenotypes.  

Here, we developed and used an integrative method that goes beyond the simple analysis of how 

biomarkers correlate with each connectome; we wanted to disclose whether any specific patterns of 

brain connectivity are associated with specific sets of biological fluid markers. In particular, we 

explored the in vivo the existence of an association between different molecular and brain network 

patterns in a cohort of asymptomatic individuals at risk for AD 18. Data on brain functional dynamics 

and proteomics were gathered: functional network connectivity was assessed as a non-invasive 

biomarker for detection of early synaptic dysfunction in AD; while six core candidate blood-based 

biomarkers were selected based on their ability to identify distinctive AD-related pathophysiological 

mechanisms, such as brain proteinopathies, amyloidogenic pathways, neuroinflammation, and axonal 

damage. Peripheral biomarkers, compared to cerebrospinal fluid (CSF) and positron emission 

tomography (PET) markers, are increasingly gaining momentum due to their low cost, time 

effectiveness, and minimal invasiveness, which are meaningful aspects for healthcare and large-scale 

investigations and clinical trials 9,19.  

 

METHODS  

 

Participants 

Data used in the preparation of this article were obtained from the “INveStIGation of AlzHeimer’s 

PredicTors in Subjective Memory Complainers” (INSIGHT-preAD) study, a large-scale French mono-

centric academic university-based observational cohort. Participants were enrolled at the Institute for 

Memory and Alzheimer’s Disease (Institut de la Mémoire et de la Maladie d’Alzheimer, IM2A) at the 

Pitié-Salpêtrière University Hospital in Paris, France. The main purpose of the INSIGHT-preAD study 

is to investigate the earliest preclinical stages of AD and the dynamic development taking into account 

influencing factors and markers of progression 20. 



The INSIGHT-preAD study includes 318 cognitively intact Caucasian older adults recruited from the 

community in the wider Paris area, France, aged 70 to 85, with subjective memory complaint (SMC), 

defined as follows: i) Participants answered “YES” to both questions «Are you complaining about 

your memory?» and «Is it a regular complaint that has lasted now more than 6 months?»; ii) 

Participants present intact cognitive functions based on the Mini-Mental State Examination (MMSE, ≥ 

27), Clinical Dementia Rating scale (CDR, = 0), and Free and Cued Selective Rating Test (FCSRT, 

total score ≥ 41). The amyloid status, APOE genotype, demographic, cognitive, functional, nutritional, 

biological and genomic information, imaging, electrophysiological, and other assessments were 

determined at baseline. Written informed consent was provided by all participants. The study was 

approved by the local Institutional Review Board and was conducted in accordance with the Helsinki 

Declaration of 1975. 

For the present study, we had considered only participants who underwent the resting state functional 

MRI (rs-fMRI) acquisition (n = 297) and for who biological data were available (n = 276), resulting in 

a sample size of 250 participants. 

 

rs-fMRI data acquisition and preprocessing 

Scanning was performed on a 3 Tesla MRI Scanner. During the rs-fMRI scan, participants were 

instructed to keep their eyes closed and stay as still as possible. The rs-fMRI images were collected by 

using an echo-planar imaging (EPI) sequence (TR = 2460 ms, TE = 30 ms, slice thickness = 3 mm, 

matrix = 64×64, voxel size = 3×3×3 mm3, number of volumes = 250, number of slices = 45, run = 1) 

which is sensitive to blood oxygenation level–dependent (BOLD) contrast (T2* weighting). Only one 

rs-fMRI run was acquired for each participant. 

The rs-fMRI data were preprocessed using Data Processing Assistant for Resting-State fMRI 

(DPARSF) 21 implemented in Data Processing & Analysis for Brain Imaging (DPABI, available at 

http://rfmri.org/dpabi), based on SPM8. The first 10 volumes for each participant were excluded to 

avoid potential noise related to the equilibrium of the magnet and participant’s adaptation to the 

scanner. The remaining 240 volumes were preprocessed in a series of steps including slice-timing 

correction, realignment, and segmentation using SPM priors for CSF and white matter (WM). We 



regressed out the global mean and the confounding effects of CSF and WM to reduce the effect of 

physiological noise. The Friston 24-parameter model, which includes six head motion parameters, six 

head motion parameters one time point before, and the 12 corresponding squared items, was used to 

regress out head motion effects 22. A temporal band pass filtering (pass band 0.01–0.1 Hz) was applied 

to reduce the effect of low frequency drift and high frequency physiological noise. 

The motion-corrected functional volumes were subsequently spatially normalized to the T1 unified 

segmentation template in Montreal Neurological Institute coordinates derived from SPM8 software 

and resampled to 3×3×3 mm3 voxels. 

 

Functional connectomes 

The objective of this analysis was to quantify functional connectivity in regions of interest (ROIs) 

included in networks previously shown to be involved in AD. Here, we selected networks that have 

hypothesized functions in AD-related pathology from the 14 networks defined by Shirer and 

colleagues 23 using independent-components analysis (available online at 

https://findlab.stanford.edu/functional_ROIs.html). Our selection included the anterior and posterior 

salience network (aSN and pSN, respectively), the ventral and dorsal default mode network (vDMN 

and dDMN, respectively), the Higher Visual Network (hVS), the Language Network (LN), the left and 

right Executive Control Network (LECN and RECN, respectively), the Sensorimotor Network (SN), 

the Precuneus Network (PN), the Visuospatial Network (VN). We excluded the auditory network, the 

primary visual network, and the sensorimotor network. In summary, our analyses included 79 brain 

functional ROIs, for a total of 3081 functional connections (edges) for each subject, according to the 

formula: (79 x 79 - 79) / 2. 

The DPARSFA toolbox was used to create individual seed-to-seed connectivity maps including 

several steps. Firstly, the mean time series of each seed region was extracted and correlated (Pearson’s 

correlation) with that of each other seed region. Then, the Fisher’s r-to-z transform was applied to 

standardize the resulting correlation maps. Age, and MMSE score were included as covariates. 

 

Blood sampling and collections tube storage 



Blood samples were taken in the morning, after a 12-hour fast, handled in a standardized way, and 

centrifuged for 15 minutes at 2,000 G-force at 4°C. Per sample, plasma fraction was collected, 

homogenized, aliquoted into multiple 0.5 mL cryovial- sterilized tubes, and finally stored at -80°C 

within 2 hours from collection. 

 

Plasma biomarkers assessment: additional description of the method 

The concentration of the following candidate surrogate biomarkers were measured in plasma to assess: 

i) neurodegeneration and neurofibrillary pathology: t-tau, ii) brain amyloidosis: the 42 amino acid-

long Aβ peptide (Aβ1-42), the 40 amino acid-long Aβ peptide (Aβ1-40), the related composite ratio Aβ1-

42/Aβ1-40, and the β-site amyloid precursor protein cleaving enzyme 1 (BACE1), iii) glial activation 

and neuroinflammation: YKL-40, and iv) large caliber axonal damage: neurofilament light chain 

(NFL) protein.  

Plasma Aβ1-42 and Aβ1-40 were analyzed using the Single molecule array (Simoa) immunoassay 

(Quanterix, Lexington, MA, USA). For Aβ1-42, the repeatability was 4.1% and the intermediate 

precision was 7.0% for an internal QC plasma sample with a concentration of 10.5 pg/mL. Regarding 

Aβ1-40, the repeatability was 4.0% and the intermediate precision was 6.4% for an internal QC plasma 

sample with a concentration of 203 pg/mL. 

Plasma t-tau was measured using the Human Total Tau 2.0 kit on the Simoa platform (Quanterix, 

Lexington, MA). Plasma T-tau, both the repeatability and intermediate precision was 12.2% for an 

internal QC plasma sample with a concentration of 1.9 pg/mL 24. Plasma NFL was measured using an 

in-house Simoa assay, as previously described in detail (ref: PMID: 26870824). Repeatability was 

9.6% and 10.6% and intermediate precision was 14.6% and 11.6%, for two internal QC plasma 

samples with concentrations of 12.9 pg/mL and 107 pg/mL, respectively 24. 

Plasma YKL-40 was analyzed using a commercial available ELISA kit (R&D Systems, Minneapolis, 

MN, US), according to manufacturer instructions24. Repeatability was 6.6% and 6.9% and 

intermediate precision 6.6% and 6.9%, for two internal QC plasma samples with concentrations of 

14.100 pg/mL and 108.000 pg/mL. 



Plasma BACE1 concentrations were measured at ADx NeuroSciences, Gent, Belgium, using a 

research prototype ELISA, based on the commercially available ELISA for CSF measurements (EQ 

6541-9601-L; Euroimmun AG, Lübeck, Germany). The design of the CSF ELISA was previously 

described 25. The intra-assay precision of this plasma research prototype was on average 2.1% CV and 

3.2% CV (coefficient of variation), based on the two reference samples, run in duplicate and over 10 

plates. The inter-assay variability was 8.5% CV and 9.5% CV (for more details see Supplementary 

material). 

ADx401 (clone 5G7) coated plates were incubated simultaneously with the sample (15 µL; undiluted) 

and the biotinylated detector mAb ADx402 (clone 10B8F1), for three hours at room temperature. For 

plasma measurements, the same protocol as that for the CSF analysis was used, as instructed by the 

manufacturer. Additionally, the same material of the CSF kit was used, including the lyophilized, 

ready-to-use calibrators and run validation controls. The only modification involved the buffer of the 

biotinylated detector mAb, which was diluted in a buffer adapted for the plasma matrix and contained 

a heterophilic blocker reagent. After analysis, BACE1 concentrations were calculated via intrapolation 

(5PL curve fit; log (X)) based on the calibrator curve. In parallel to the clinical plasma samples, which 

were blinded and randomized before testing, two reference samples from ADx NeuroSciences were 

analyzed. 

 

Statistical analyses 

We aimed to relate functional connectomes to AD-relevant plasma biomarkers in an integrated 

analysis. To this aim, we applied the Partial Least Squares Correlation (PLSC), a procedure that seeks 

maximal correlations between combinations of variables in two sets 26. The 3,081 connectomes were 

combined into a single large connectome matrix (set A) containing all connectomes (in columns) for 

all subjects (in lines). The six blood-based biomarkers (BACE1, Aβ1-42, the Aβ1-40/Aβ1-42 ratio, tau, 

NFL, and YKL-40) were included in a separated matrix (set B). The goal was to find the shared 

information between these two sets. For this purpose, singular value decomposition was applied on the 

covariance matrix between both sets. Thus, new variables for each set (called latent variables) were 

calculated as linear combination of the original variables with the singular vectors for each dimension 



which maximized covariance between both variables. 

Statistical significance of PLSC was assessed by resampling methods: the significance of the global 

model and the dimensions were assessed with permutation tests (we used 10,000 permuted samples); 

whereas the significance of specific measures of each set in a dimension was assessed via the 

Bootstrap 27. Bootstrap ratios were computed by dividing the weight of a variable by the standard 

deviation of its bootstrapped distribution. The bootstrap ratio is akin to a Student t criterion and the 

absolute value of 1.96 roughly corresponds to the critical value  = .05 28. 

Absolute values of blood biomarkers and connectomes higher than seven standard deviations of the 

mean were excluded from the analysis. Age, sex, and APOE ε4 were regressed out of biological 

markers data as potential confounding factors, as well as sex, total intracranial volume and APOE ε4 

for connectomes.  

Statistical analyses were performed using R version 3.3.2 (available at https://www.r-project.org).  

 

RESULTS 

Participants 

Eleven of the 250 participants did not qualify for the fMRI analyses due to incidental imaging 

abnormalities (ten had a meningioma, and one did not conclude the entire rs-fMRI acquisition). 

Thirty-four additional participants were excluded because absolute values of blood biomarkers or 

connectomes were seven standard deviations higher than the mean. 

Demographic characteristics, global cognition, biological measures, and APOE genotype of the final 

subset of 205 participants are shown in Table 1. 

 

Partial least squares correlation (PLSC) analysis  

Using PLSC, we estimated the relationship between plasma biomarkers and the functional brain 

dynamics at rest. PLSC identify pairs of variates along which sets of plasma biomarkers that are 

related to the AD pathophysiology and patterns of brain connectivity co-varying in a similar way 

across participants (bio-neural mode). This analysis revealed a single highly significant component 

that relates functional connectomes to biological measures (Component 2, Cov = 965.9, p = .006). 



Such component explained around the 21% of the total covariance. The relationships of all 

participants with this mode, i.e., individual scores in the plasma surrogate biomarkers versus 

individual scores in the connectome correlation, are also plotted in Figure 1: high-scoring subjects 

(top-right points in the scatter-plot) have high relative values for both brain functional and plasma 

biomarker values. 

Figure 2 displays the strength of association of the 6 plasma biomarkers with the significant PLSC 

mode. Interestingly, all the bootstrap ratios of the blood-based surrogate biomarkers were negative. 

190 connectomes were significant. In particular, the salience networks the DMN, and the language and 

executive control networks were the most represented among the significant connectomes (Figure 3).  



Discussion 

Unravelling the link across different multi-scale systems during the earliest stages of AD is critical to 

understand the complex pathophysiological dynamics of the evolving underlying disease. We applied 

an integrated analysis on brain imaging and fluid biomarkers of AD within a cohort of elderly 

individuals at risk for AD.  

We found one combination of variables composed by blood-based biomarkers and functional 

connectomes that maximally co-varied among individuals at risk for AD (i.e., mode). These results 

confirm previous findings showing the existence of a synergistic relationship between network failure 

and pathophysiological fluid biomarkers 14–17. However, our results boost previous findings showing 

that different pathophysiological mechanisms – including brain proteinopathies, neuroinflammation, 

axonal damage, and neurodegeneration – emerge in aging asymptomatic at-risk individuals for AD. In 

the present study, none of the plasma biomarkers of the selected comprehensive panel had a significant 

comparative performance; instead, all analysed molecular biomarkers seem to contribute to the unified 

analysis, and affect neural networks. Such evidence agrees with the manifold pathomechanistic 

alterations occurring in AD and with the hypothesis that a single molecular biomarker i) cannot 

account for the complexity of the molecular landscape of AD, and ii) is not sufficient to generate 

substantial predictive power. It is also worthwhile highlighting that all the biological markers correlate 

negatively with the significant mode. A previous study used a similar method to evaluate the 

correlation between behavioural and imaging measures 29. Authors identified a “positive-negative” 

axis, where positively correlated behavioral indexes are commonly considered as positive personal 

qualities (e.g., life satisfaction, years of education, income), and negatively behavioral indexes relate 

to negative traits (e.g., those related to substance use, rule breaking behavior, anger). Following the 

same interpretation, our analysis may reveal that all the selected fluid biomarkers may be related to 

pathological conditions.  

In contrast, the overall connectome-modulation latent variables and the original connectomes are 

positively inter-correlated, as indicated by the dominance of red-coloured edges reported in Figure 3. 

These results denote that individuals scoring highly in the bio-neural mode demonstrate increased 



concentrations of molecular biomarkers and stronger overall connectivity than low-scoring 

individuals. The emerging connectivity pattern involves, but is not limited to, the salience networks, 

the DMN, and the language and executive control networks. Findings are converging in identifying 

alterations in these networks throughout the temporal AD continuum 30,31.  However, only DMN 

dysfunctions related to decreased CSF Aβ1-42 and high CSF total tau concentrations have been 

investigated and demonstrated so far 15,17.  

In the context of complex and non-linear dynamic diseases, such as AD, spatio-temporal changes may 

gradually breakout across brain networks, leading to widespread disconnections and progressive 

cognitive dysfunctions. However, the mechanisms underlying the dynamic spreading of 

pathophysiological mechanisms are not yet fully elucidated 32. 

Identifying key brain regions that are more vulnerable to stressors is a relevant information regarding 

expected treatment effects on brain function. Using these regions as disease outcomes during early 

stages could reflect effects on adaptive responses and compensatory mechanisms, preserving brain 

homeostasis before the spreading of any AD-related pathophysiological mechanisms. The question of 

how homeostasis can be preserved through dynamic adaptive responses and compensatory 

mechanisms occurring across molecules, cells, and higher complexity networks needs further 

elucidation.  

We hypothesize that the identified bio-neural mode might represent a promising innovative composite 

biomarker to track in vivo the dynamic interplay between molecular mechanisms and network 

organizational patterns related to AD pathophysiology. The present study involved individuals at risk 

of developing AD and, thus, may support the hypothesis of strong interindividual variability in 

adaptive responses and compensatory mechanisms ensuring brain and body homeostasis 3,33–36. Long-

term follow-up studies, including a sufficient number of progressors to symptomatic stages, are 

necessary to clarify whether the bio-neural mode may correspond to adaptive/compensatory dynamics. 

In our opinion, the bio-neural mode may be informative as an outcome of drug trials in  Research & 

Development (R&D) programs for putative disease-modifying compounds 3,37,38.  

Composite biomarkers, such as the bio-neural mode, may contribute to the development of systems 

pharmacology-based approaches in drugs Research & Development (R&D) programs 2,38,39. Systems 



pharmacology can predict both the effect and the safety profile of drugs across biological networks 

and body systems computing the inter-individual genetic and biological variability 2,38,39. Pursuing this 

approach will translate into the accomplishment of the precision pharmacology which represent a 

paradigm shift in decision-making processes for drug R&D programs which develop pathway-based 

therapies individually tailored to a biological staging workflow 3,40. Precision pharmacology, presently 

evolving in more advanced areas of medicine, such as oncology 41, is expected to promote the 

development in the field of neurodegenerative diseases, including AD, in line with the framework of 

precision medicine.  
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Figures and Tables 

 

Variable All APOE e4- APOE e4+ p - value

Participants 205 163 (80%) 42 (20%)

Female 124 (60%) 95 (58%) 29 (69%)

Male 81 (40%) 68 (42%) 13 (31%)

Age (yrs) 75.7 ± 3.4 75.7 ± 3.4 75.6 ± 3.4 .830

MMSE 28.7 ± 1.0 28.7 ± 1.0 28.6 ± 1.0 .323

YKL40 58818.9 ± 40913.5 60093.9 ± 43113.7 53870.6 ± 30865.8 .381

NFL 29.7 ± 12.6 29.5 ± 13.1 30.5 ± 10.0 .664

Tau 4.5 ± 2.2 4.6 ± 2.3 4.3 ± 1.7 .435

Aβ42 18.4 ± 5.2 18.9 ± 5.4 16.2 ± 3.8 .003*

Ratio4240 .06 ± .01 .06 ± .01 .05 ± .01 .002*

BACE1 1109.2 ± 189.8 1104.0 ± 190.6 1129.4 ± 187.4 .441

* p < .05 t-test 

MMSE = Mini Mental State Examination; YKL40 =Chitinase-3-like protein 1; NFL = neurofilament light protein; 

Aβ = amyloid beta peptide; BACE1 = Beta-secretase 1 

.203

 

Table 1. Demographic, neuropsychological, and biological measures. Counts, percentages, means, and 

standard deviations are shown for the two groups, as well as p-values, to indicate statistically 

significant group differences. T-test was performed for continuous variables and chi-square test for 

categorical variables. 

MMSE = Mini-Mental State Examination; YKL40 = Chitinase-3-like protein 1; NFL = neurofilament 

light protein; Aβ = amyloid beta peptide; BACE1 = β-site amyloid precursor protein cleaving enzyme 

1.  

 

 



 
 

Figure 1. The scatter-plot represents the bio-neural mode: plasma biomarkers latent variables versus 

connectome latent variables are shown for each individual. The high correlation represented indicates 

significant co-variation between the two datasets, i.e. plasma biomarkers and brain functional 

connectomes. 
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Figure 2. Association strength of plasma biomarkers. The six plasma biomarkers are strongly 

associated with the PLSC significant component (BR ≥ 1.96). Note: BR = bootstrap ratio. 
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Figure 3. The 190 brain connections associated with the PLSC bio-neural mode. Red indicates 

positive connections; blue indicates negative connections. The thickest curves represent connections 

with largest PLSC weights. RECN = right executive control network; vDMN= ventral default mode 

network; VS = visual spatial network; aSalience = anterior salience network; BG = basal ganglia 

network; dDMN = dorsal default mode network; hVisual = high visual networks; Language = 

Language network; LECN = left executive control network; Pcu = precuneus network; pSalience = 

posterior salience network. 

 

 

 
 


