131 research outputs found
American Etiquette and Rules of Politeness (Part One)
This is a volume dedicated to explaining American etiquette, which the authors consider to be, The most complete work on Etiquette that has yet been presented to the public. This first part of the book covers the value of etiquette, good manners, social intercourse, home etiquette, home culture, entrance into society, introductions, salutations, conversation, table etiquette, street etiquette, traveling, riding, driving, public etiquette, calling and visiting, receptions, parties, dinners, women\u27s higher culture, courtship, marriage, wedding etiquette, good conduct, anniversaries, personal care and hygiene, and clothing.https://openworks.wooster.edu/motherhomeheaven/1080/thumbnail.jp
American Etiquette and Rules of Politeness (Part Two)
This is a volume dedicated to explaining American etiquette, which the authors consider to be, The most complete work on Etiquette that has yet been presented to the public. This second part of the book discusses the etiquette of gifts, business, letter writing, notes, cards, funerals, addressing foreign people with titles, games, and amusements. It also discusses specific etiquette for Washington, D.C. The final chapters explain the language of flowers, the significance of precious stones, and recipes for personal care.https://openworks.wooster.edu/motherhomeheaven/1081/thumbnail.jp
Two-Dimensional Vortex Lattice Melting
We report on a Monte-Carlo study of two-dimensional Ginzburg-Landau
superconductors in a magnetic field which finds clear evidence for a
first-order phase transition characterized by broken translational symmetry of
the superfluid density. A key aspect of our study is the introduction of a
quantity proportional to the Fourier transform of the superfluid density which
can be sampled efficiently in Landau gauge Monte-Carlo simulations and which
satisfies a useful sum rule. We estimate the latent heat per vortex of the
melting transition to be where is the melting
temperature.Comment: 10 pages (4 figures available on request), RevTex 3.0, IUCM93-00
Fermi edge singularities in X-ray spectra of strongly correlated fermions
We discuss the problem of the X-ray absorption in a system of interacting
fermions and, in particular, those features in the X-ray spectra that can be
used to discriminate between conventional Fermi-liquids and novel "strange
metals". Focusing on the case of purely forward scattering off the core-hole
potential, we account for the relevant interactions in the conduction band by
means of the bosonization technique. We find that the X-ray Fermi edge
singularities can still be present, although modified, even if the density of
states vanishes at the Fermi energy, and that, in general, the relationship
between the two appears to be quite subtle.Comment: Latex, 16 pages, Princeton preprin
Experimental study of weak antilocalization effect in a high mobility InGaAs/InP quantum well
The magnetoresistance associated with quantum interference corrections in a
high mobility, gated InGaAs/InP quantum well structure is studied as a function
of temperature, gate voltage, and angle of the tilted magnetic field.
Particular attention is paid to the experimental extraction of phase-breaking
and spin-orbit scattering times when weak anti- localization effects are
prominent. Compared with metals and low mobility semiconductors the
characteristic magnetic field in high mobility
samples is very small and the experimental dependencies of the interference
effects extend to fields several hundreds of times larger. Fitting experimental
results under these conditions therefore requires theories valid for arbitrary
magnetic field. It was found, however, that such a theory was unable to fit the
experimental data without introducing an extra, empirical, scale factor of
about 2. Measurements in tilted magnetic fields and as a function of
temperature established that both the weak localization and the weak
anti-localization effects have the same, orbital origin. Fits to the data
confirmed that the width of the low field feature, whether a weak localization
or a weak anti-localization peak, is determined by the phase-breaking time and
also established that the universal (negative) magnetoresistance observed in
the high field limit is associated with a temperature independent spin-orbit
scattering time.Comment: 13 pages including 10 figure
Nucleon deformation in finite nuclei
The deformation of a nucleon embedded in various finite nuclei is considered
by taking into account the distortion of the chiral profile functions under the
action of an external field representing the nuclear density. The baryon charge
distribution of the nucleon inside light, medium-heavy and heavy nuclei is
discussed. The mass of the nucleon decreases as it is placed deeper inside the
nucleus and reaches its minimum at the center of the nucleus. We discuss the
quantization of non-spherical solitons and its consequences for the mass
splitting of the delta states. We show that bound nucleons acquire an intrinsic
quadrupole moment due to the deformation effects. These effects are maximal for
densities of nuclei about \rho(R)\sim 0.3...0.35 \rho(0). We also point out
that scale changes of the electromagnetic radii can not simply be described by
an overall swelling factor.Comment: 29 pp, REVTeX, 8 figures, more detailed discussion on quantization
and intrinsic quadrupole moments, references adde
Sliding Luttinger liquid phases
We study systems of coupled spin-gapped and gapless Luttinger liquids. First,
we establish the existence of a sliding Luttinger liquid phase for a system of
weakly coupled parallel quantum wires, with and without disorder. It is shown
that the coupling can {\it stabilize} a Luttinger liquid phase in the presence
of disorder. We then extend our analysis to a system of crossed Luttinger
liquids and establish the stability of a non-Fermi liquid state: the crossed
sliding Luttinger liquid phase (CSLL). In this phase the system exhibits a
finite-temperature, long-wavelength, isotropic electric conductivity that
diverges as a power law in temperature as . This two-dimensional
system has many properties of a true isotropic Luttinger liquid, though at zero
temperature it becomes anisotropic. An extension of this model to a
three-dimensional stack exhibits a much higher in-plane conductivity than the
conductivity in a perpendicular direction.Comment: Revtex, 18 pages, 8 figure
Superconductivity in the SU(N) Anderson Lattice at U=\infty
We present a mean-field study of superconductivity in a generalized N-channel
cubic Anderson lattice at U=\infty taking into account the effect of a
nearest-neighbor attraction J. The condition U=\infty is implemented within the
slave-boson formalism considering the slave bosons to be condensed. We consider
the -level occupancy ranging from the mixed valence regime to the Kondo
limit and study the dependence of the critical temperature on the various model
parameters for each of three possible Cooper pairing symmetries (extended s,
d-wave and p-wave pairing) and find interesting crossovers. It is found that
the d- and p- wave order parameters have, in general, very similar critical
temperatures. The extended s-wave pairing seems to be relatively more stable
for electronic densities per channel close to one and for large values of the
superconducting interaction J.Comment: Seven Figures; one appendix. Accepted for publication in Phys. Rev.
An Infrared Divergence Problem in the cosmological measure theory and the anthropic reasoning
An anthropic principle has made it possible to answer the difficult question
of why the observable value of cosmological constant (
GeV) is so disconcertingly tiny compared to predicted value of vacuum
energy density GeV. Unfortunately, there is a
darker side to this argument, as it consequently leads to another absurd
prediction: that the probability to observe the value for randomly
selected observer exactly equals to 1. We'll call this controversy an infrared
divergence problem. It is shown that the IRD prediction can be avoided with the
help of a Linde-Vanchurin {\em singular runaway measure} coupled with the
calculation of relative Bayesian probabilities by the means of the {\em
doomsday argument}. Moreover, it is shown that while the IRD problem occurs for
the {\em prediction stage} of value of , it disappears at the {\em
explanatory stage} when has already been measured by the observer.Comment: 9 pages, RevTe
A combined wear-fatigue design methodology for fretting in the pressure armour layer of flexible marine risers
This paper presents a combined experimental and computational methodology for fretting wear-fatigue prediction of pressure armour wire in flexible marine risers. Fretting wear, friction and fatigue parameters of pressure armour material have been characterised experimentally. A combined fretting wear-fatigue finite element model has been developed using an adaptive meshing technique and the effect of bending-induced tangential slip has been characterised. It has been shown that a surface damage parameter combined with a multiaxial fatigue parameter can accurately predict the beneficial effect of fretting wear on fatigue predictions. This provides a computationally efficient design tool for fretting in the pressure armour layer of flexible marine risers
- …