173 research outputs found

    Effects of fluoride on primary cultured haemocytes from the marine gastropod Haliotis tuberculata

    Get PDF
    International audienceAs a consequence of human's activities, fluoride concentration in many aquatic ecosystems is significantly increasing. Nevertheless, little is known about fluoride toxicity to aquatic life. In this study the effect of exposure to different concentrations of sodium fluoride (2, 10, 50, 250 and 1,250 μg mL −1) during 24 h on primary cultured haemocytes of the gastropod Haliotis tuberculata was realized. Results indicate no significant effect of NaF on cell viability, Lysosomal membrane stability, phagocytosis and ROS production at concentrations of 2, 10, 50 and 250 μg mL −1. Nevertheless, lysosomal membrane alterations, a decrease of phagocytosis and morphological changes of H. tuberculata haemocytes were observed at concentration of 1,250 µg mL −1 NaF suggesting a potential impact of NaF at high concentration in the environment

    Autocorrelation analysis for the unbiased determination of power-law exponents in single-quantum-dot blinking

    Full text link
    We present an unbiased and robust analysis method for power-law blinking statistics in the photoluminescence of single nano-emitters, allowing us to extract both the bright- and dark-state power-law exponents from the emitters' intensity autocorrelation functions. As opposed to the widely-used threshold method, our technique therefore does not require discriminating the emission levels of bright and dark states in the experimental intensity timetraces. We rely on the simultaneous recording of 450 emission timetraces of single CdSe/CdS core/shell quantum dots at a frame rate of 250 Hz with single photon sensitivity. Under these conditions, our approach can determine ON and OFF power-law exponents with a precision of 3% from a comparison to numerical simulations, even for shot-noise-dominated emission signals with an average intensity below 1 photon per frame and per quantum dot. These capabilities pave the way for the unbiased, threshold-free determination of blinking power-law exponents at the micro-second timescale

    Action du sulfite de sodium sur la concentration en composés organohalogénés et sur l'activité mutagène de solutions chlorées de substances humiques

    Get PDF
    Cette étude a eu pour but de déterminer l'effet d'un traitement par le sulfite de sodium sur la concentration en composés organohalogénés totaux (TOX) et sur l'activité mutagène de solutions chlorées de substances humiques d'origine aquatique (SHA), après avoir cherché à préciser l'influence du pH et du temps sur la concentration en TOX.Les résultats obtenus à partir d'échantillons chlorés de SHA en absence de chlore résiduel ont permis de mettre en évidence une diminution de la concentration en composés organohalogénés totaux, soit par stockage en milieu neutre ou basique, soit par addition de sulfite de sodium. L'intensité de cette réduction de la concentration en TOX augmente avec le pH, le temps de réaction et la dose de sulfite de sodium introduite.Les résultats obtenus à partir d'échantillons contenant du chlore libre indiquent que seule une déchloration totale avec un excès de sulfite de sodium peut conduire, en milieu neutre, à une diminution de l'activité mutagène et de la concentration en TOX des solutions diluées de SHA. La comparaison des pourcentages d'abattement obtenus sur le paramètre TOX et sur l'activité mutagène indique que la diminution de la génotoxicité par déchloration totale est due à l'action du sulfite sur des composés mutagènes non chlorés ou sur des composés chlorés fortement mutagènes et ne représentant qu'une très faible fraction du TOX.If is a well known tact that mimerous organohalogenated compounds are formed during the chlorination (preoxidation or final disinfection) of drinking water. Some of these compounds have been shown to be mutagenic. Recent studies have suggested that a treatment with oxygenated derivatives of SIV (SO2, NaHSO3 and Na2SO3) could reduce the genotoxicity of chlorinated drinking water.The general aim of Ibis study was to determine the effect of dechlorination treatments on the mutagenic activity of chlorinated drinking water. The following experiments were carried out in order to point out the effect of a treatment with sodium sulfite on the concentration of total organohalogenated compounds (TOX) and on the mutagenic activity of chlorinated dilute solutions of Aquatic Humic Substances (AHS).At first, the affects of pH, sodium sulfite dose and contact time on TOX concentration were investigated. Then, the importance of the dechlorination rate (partial or complete) on TOX concentration and also on the mutagenic activity could be studied.ExperimentalAquatic Humic Substances (natural mixture of fulvic and humic acids) were dissolved in phosphate-buffered ultra-pure water at 5 and 15 mg l-1 concentrations (pH 6.1 and 6.9 respectively). Stock solutions of chlorine were prepared in the laboratory and titrated by iodometry. Chlorination and dechlorination treatments were carried out in headspace-free baffles, at 20± 1 °C in the dark. Residual chlorine was determined by spectrophotometric measurements at 510 nm, following the calorimetric method using N,N-diethylphenylene-1,4-diamine (DPD). To avoid the slow oxidation of Slv into Svl by dissolved oxygen, the sodium sulfite solutions were prepared freshly before use. TOX concentrations were measured using a DOHRMAN DX-20 TOX analyser equipped with a MC-1 microcoulometric cell and with an AD-2 adsorption module. Before analysis, the residual chlorine was neutralized with sodium thiosulfate and samples were acidified to pH 1.4.The mutagenic activity was determined using acetone-dichloromethane extracts (AMBERLITE XAD-8 and XAD-2 resins) of the aqueous samples of chlorinated and dechlorinated solutions of AHS, acidified to pH 2.0 before extraction. The mutagenicity tests were carried out on TA 98 and TA 100 tester strains, following the method described by MARON and AMES (1983).Results-Effect of pH, addition of sodium sulfite and storage time on the TOX concentrationThe experiments carried out with dilute solutions of AHS ([AHS] = 5 mg 1-1; DOC = 2.5 mg Cl-1; pH = 6.1) showed a linear relationship between TOX production and chlorine consumption in the range 0-2.0 mg Cl2 l-1 (fig. 2).15 % of the chlorine demand was incorporated as organic chlorine in molecules.Experiments performed on solutions containing no residual free chlorine showed that organohatogenated compounds could be partially destroyed upon storage at neutral or basic pH (table 1). Reductions in TOX concentrations of 10 % at pH 6.1-8.5 in 24 hours and of 20 % at pH 11.5 in 2 hours were observed. This was enhanced by increasing the storage time.The addition of sodium sulfite (100 µmol l-1) in solutions containing no residual free chlorine significantly reduced the TOX concentration (10 % in 2 hours at pH 6.1-8.5; table 1). This reduction was enhanced by increasing sulfite dose and storage time and by increasing pH (30 % in 2 hours at pH 11.5). Furthermore, at a given pH value and for a reaction time of 2 hours, the decrease in TOX concentration was larger in presence of sulfite.- Effect of a dechlorination treatment on the TOX concentrationAs shown in figure 3, a dechlorination treatment (reduction of the residual free chlorine concentration) with sodium sulfite could significantly reduce the TOX concentration of the dilute solutions of AHS at pH 6.1 only if an excess of the dechlorinating agent was added. This effect was enhanced by increasing the excess of sulfite but nevertheless seemed to be limited (less than 15 % of reduction for the highest doses used; table 2).The free chlorine residuals measured after a 2 hours partial dechlorination confirmed the stoichiometric factor of 1 mole/mole for the reaction between chlorine and sodium sulfite.- Effect of a dechlorination treatment on the mutagenic activity and on the TOX concentrationThe dechlorination treatments were carried out on chlorinated dilute solutions of AHS ([AHS] = 15 mg l-1; DOC 7.5 mg C l-1; pH = 6.9). The TOX concentrations were measured on aqueous solutions and mutagenicity tests were performed on the corresponding acetone-dichloromethane extracts following a solvent exchange (dimethylsulfoxide). The results obtained showed again that only a total dechlorination treatment could reduce the TOX concentration of the aqueous chlorinated solutions and was able to destroy a significant part of the mutagenic activity of the extracts (table 3 and fig. 4).Although the effect of sulfite on TOX concentration seemed limited (less than 7 % reduction for the highest sulfite dose tested), the reduction in the genotoxicity was more important when the excess of sulfite was increased. No correlation between the TOX concentration and the mutagenic activity could be established. The mutagenic compounds destroyed by sodium sulfite do not appear to be organohalogenated ones. If they are, they are present at trace levels and thus are extremely patent and account for a very little part of the TOX concentration

    Sub-wavelength surface IR imaging of soft-condensed matter

    Full text link
    Outlined here is a technique for sub-wavelength infrared surface imaging performed using a phase matched optical parametric oscillator laser and an atomic force microscope as the detection mechanism. The technique uses a novel surface excitation illumination approach to perform simultaneously chemical mapping and AFM topography imaging with an image resolution of 200 nm. This method was demonstrated by imaging polystyrene micro-structures

    On-demand semiconductor single-photon source with near-unity indistinguishability

    Full text link
    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.Comment: 11 pages, 11 figure

    Live imaging of targeted cell ablation in Xenopus:a new model to study demyelination and repair

    Get PDF
    Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the central nervous system (CNS). In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the E. coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous pro-drug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair

    Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight

    Get PDF
    Indexación: Web of Science; PubMedBackground Berry size is considered as one of the main selection criteria in table grape breeding programs. However, this is a quantitative and polygenic trait, and its genetic determination is still poorly understood. Considering its economic importance, it is relevant to determine its genetic architecture and elucidate the mechanisms involved in its expression. To approach this issue, an RNA-Seq experiment based on Illumina platform was performed (14 libraries), including seedless segregants with contrasting phenotypes for berry weight at fruit setting (FST) and 6–8 mm berries (B68) phenological stages. Results A group of 526 differentially expressed (DE) genes were identified, by comparing seedless segregants with contrasting phenotypes for berry weight: 101 genes from the FST stage and 463 from the B68 stage. Also, we integrated differential expression, principal components analysis (PCA), correlations and network co-expression analyses to characterize the transcriptome profiling observed in segregants with contrasting phenotypes for berry weight. After this, 68 DE genes were selected as candidate genes, and seven candidate genes were validated by real time-PCR, confirming their expression profiles. Conclusions We have carried out the first transcriptome analysis focused on table grape seedless segregants with contrasting phenotypes for berry weight. Our findings contributed to the understanding of the mechanisms involved in berry weight determination. Also, this comparative transcriptome profiling revealed candidate genes for berry weight which could be evaluated as selection tools in table grape breeding programs.http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0789-

    Lignin biomarkers as tracers of mercury sources in lakes water column

    Get PDF
    This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems

    Full counting statistics of quantum dot resonance fluorescence

    Get PDF
    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding
    corecore