133 research outputs found

    Community Asynchrony Increased Its Stability by Mediating the Relationship of Diversity–Stability Relationships in Loess Plateau, China

    Get PDF
    Extreme weather such as heavy rainfall and drought are threatening the global grassland and its potential to mitigate climate change. Therefore, understanding the drivers that promote the stability of grassland ecosystems is considered to be critical to mitigate the adverse effects of climate change on grasslands. Here, we use precipitation addition (PA) + grazing experiment to explain how species richness, aboveground biomass, species asynchrony, functional group level stability, drought tolerance and grazing tolerance can maintain grassland productivity stability. The results showed that grazing counteracted the promoting effect of rainfall on vegetation to a certain extent, and weakened the sensitivity of species of grazing tolerant functional group to rainfall. Rainfall and grazing affect the asynchrony of the community through the influence of drought tolerance and grazing tolerance functional groups, and then affect the stability of the community through the mediation of the relationship between aboveground biomass and species richness. This effect was significantly correlated with the differences of vegetation characteristics and resource acquisition strategies, but not with the community species richness. This study provides more explanations for the maintenance mechanism of community stability

    Self-assembly of 3D fennel-like Co3O4 with thirty-six surfaces for high performance supercapacitor

    Get PDF
    Three-dimensional (3D) fennel-like cobalt oxide (II,III) (Co3O4) particles with thirty-six surfaces on nickel foams were prepared via a simple hydrothermal synthesis method and its growth process was also researched. The crystalline structure and morphology were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The Brunauer-Emmett Teller (BET) analysis revealed that 3D fennel-like Co3O4 particles have high specific surface area. Therefore, the special structure with thirty-six surfaces indicates the good electrochemical performance of the micron-nanometer material as electrode material for supercapacitors. The cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) were conducted to evaluate the electrochemical performances. Compared with other morphological materials of the similar sizes, the Co3O4 particles on nickel foam exhibit a high specific capacitance of 384.375 F.g(-1) at the current density of 3A.g(-1) and excellent cycling stability of a capacitance retention of 96.54% after 1500 galvanostatic charge-discharge cycles in 6M potassium hydroxide (KOH) electrolyte

    Two Novel Dermaseptin-Like Antimicrobial Peptides with Anticancer Activities from the Skin Secretion of Pachymedusa dacnicolor

    Get PDF
    The dermaseptin antimicrobial peptide family contains members of 27–34 amino acids in length that have been predominantly isolated from the skins/skin secretions of phyllomedusine leaf frogs. By use of a degenerate primer in Rapid amplification of cDNA ends (RACE) PCR designed to a common conserved domain within the 5′-untranslated regions of previously-characterized dermaseptin encoding cDNAs, two novel members of this peptide family, named dermaseptin-PD-1 and dermaseptin-PD-2, were identified in the skin secretion of the phyllomedusine frog, Pachymedusa dacnicolor. The primary structures of both peptides were predicted from cloned cDNAs, as well as being confirmed by mass spectral analysis of crude skin secretion fractions resulted from reversed-phase high-performance liquid chromatography. Chemically-synthesized replicates of dermaseptin-PD-1 and dermaseptin-PD-2 were investigated for antimicrobial activity using standard model microorganisms (Gram-positive bacteria, Gram-negative bacteria and a yeast) and for cytotoxicity using mammalian red blood cells. The possibility of synergistic effects between the two peptides and their anti-cancer cell proliferation activities were assessed. The peptides exhibited moderate to high inhibition against the growth of the tested microorganisms and cancer cell lines with low haemolytic activity. Synergistic interaction between the two peptides in inhibiting the proliferation of Escherichia coli and human neuronal glioblastoma cell line, U251MG was also manifested

    Climate control on terrestrial biospheric carbon turnover

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon, D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., Wacker, L., Wu, Y., & Zhao, M. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 118(8), (2021): e2011585118, htps://doi.org/ 10.1073/pnas.2011585118.Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.This work was supported by grants from the US NSF (OCE-0928582 to T.I.E. and V.V.G.; OCE-0851015 to B.P.-E., T.I.E., and V.V.G.; and EAR-1226818 to B.P.-E.), Swiss National Science Foundation (200021_140850, 200020_163162, and 200020_184865 to T.I.E.), and National Natural Science Foundation of China (41520104009 to M.Z.)

    Structure-Independent Conductance of Thiophene-Based Single-Stacking Junctions.

    Get PDF
    Intermolecular charge transport is crucial in π-conjugated materials but the experimental investigation remained challenging. Here, we show that charge transport through intermolecular and intramolecular paths in single-molecule and single-stacking thiophene junctions could be investigated using the mechanically controllable break junction (MCBJ) technique. We found that intermolecular charge transport ability through different single-stacking junctions is approximately independent of molecular structures, which contrasts with the strong length dependence of conductance in single-molecule junctions with the same building blocks, and the dominant charge transport path of molecules with two anchors transits from intramolecular to intermolecular paths when the conjugation pattern increased. The increase of conjugation further leads to higher binding probabilities due to the variation in binding energies supported by density functional theory (DFT) calculations. Our results demonstrate that intermolecular charge transport is not only the limiting step but also provides the efficient and dominate charge transport path at the single-molecule scale

    14C and 13C characteristics of higher plant biomarkers in Washington margin surface sediments

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 105 (2013): 14-30, doi:10.1016/j.gca.2012.11.034.Plant wax lipids and lignin phenols are the two most common classes of molecular markers that are used to trace vascular plant-derived OM in the marine environment. However, their 13C and 14C compositions have not been directly compared, which can be used to constrain the flux and attenuation of terrestrial carbon in marine environment. In this study, we describe a revised method of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative capillary gas chromatography (PCGC). We then examine in detail the 13C and 14C compositions of plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington margin that are influenced by discharge of the Columbia River. Plant wax lipids (including n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in both δ13C (-28.3 to -37.5 ‰) and ∆14C values (-204 to +2 ‰), suggesting varied inputs and/or continental storage and transport histories. In contrast, lignin phenols exhibited similar δ13C values (between -30 to -34 ‰) and a relatively narrow range of ∆14C values (-45 to -150 ‰; HPLC-based mesurement) that were similar to, or younger than, bulk OM (-195 to -137 ‰). Moreover, lignin phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that vanillyl phenols were on average ~500 years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments. The isotopic characteristics, abundance, and distribution of lignin phenols in sediments suggest that they serve as promising tracers of recently biosynthesized terrestrial OM during supply to, and dispersal within the marine environment. Lignin phenol 14C measurements may also provide useful constraints on the vascular plant end member in isotopic mixing models for carbon source apportionment, and for interpretation of sedimentary records of past vegetation dynamics. Key words: 14C and 13C composition, radiocarbon age, plant wax lipids, lignin phenols, Washington margin, marine carbon cycling, terrestrial organic matterGrants OCE-9907129, OCE-0137005, and OCE-0526268 (to TIE) from the National Science Foundation (NSF) supported this research

    Emotions in Facebook: Analysing Emotions’ Distribution, Diffusion and Agenda Effect on VG’s Facebook Page

    No full text
    This study examined emotions of news and comments from a famous Norwegian newspaper called Verdens Gang’s (VG) Facebook public page. The data set for analysis contains 84 news items and 7876 comments collected from the new posted on VG’s Facebook page in the last three days in August 2018. Emotions of textual content (news titles and comments) were detected by Senpy which is automatic emotion detector and extract emotions in a detailed level (output specific types of emotion e.g.: happiness, sadness, fear, anger and disgust) rather than polarity level (positive, negative and neutral). After analysing the reactions expressed by public and emotions of comments and news titles, findings suggest that: the main emotion on VG’s Facebook page is happiness, and the emotional strength (total number of emotions in comments of each news) is highly positive correlated with happiness. Findings also suggest that people are more likely to express happiness when the engagement of the news is large. News with the emotion of anger could reach the highest number of users, whereas news with the emotion of fear reach the smallest number of audiences and have the lowest intensity of diffusion. Moreover, anger news gets a comment faster and spread longer than news with other emotions, while happy news will take the longest time to get a feedback from public and has the shortest spreading time span. In addition, more than half part of the news’ emotional agenda corresponds with the public’s emotions; happiness and anger has a stronger agenda affect than fear and sadness

    Research on Pattern Recognition Method for φ-OTDR System Based on Dendrite Net

    No full text
    The phase-sensitive optical time-domain reflectometer (φ-OTDR) is commonly used in various industries such as oil and gas pipelines, power communication networks, safety maintenance, and perimeter security. However, one challenge faced by the φ-OTDR system is low pattern recognition accuracy. To overcome this issue, a Dendrite Net (DD)-based pattern recognition method is proposed to differentiate the vibration signals detected by the φ-OTDR system, and normalize the differential signals with the original signals for feature extraction. These features serve as input for the pattern recognition task. To optimize the DD for the pattern recognition of the feature vectors, the Variable Three-Term Conjugate Gradient (VTTCG) is employed. The experimental results demonstrate the effectiveness of the proposed method. The classification accuracy achieved using this method is 98.6%, which represents a significant improvement compared to other techniques. Specifically, the proposed method outperforms the DD, Support Vector Machine (SVM), and Extreme Learning Machine (ELM) by 7.5%, 8.6%, and 1.5% respectively. The findings of this research paper indicate that the pattern recognition method based on DD and optimized using the VTTCG can greatly enhance the accuracy of the φ-OTDR system. This improvement has important implications for various applications in industries such as pipeline monitoring, power communication networks, safety maintenance, and perimeter security
    • …
    corecore