135 research outputs found

    Temporal Evolution of the Vela Pulsar's Pulse Profile

    Full text link
    The mechanisms of emission and changes in rotation frequency ('glitching') of the Vela pulsar (J0835-4510) are not well understood. Further insight into these mechanisms can be achieved by long-term studies of integrated pulse width, timing residuals, and bright pulse rates. We have undertaken an intensive observing campaign of Vela and collected over 6000 hours of single pulse data. The data shows that the pulse width changes with time, including marked jumps in width after micro-glitches (frequency changes). The abundance of bright pulses also changes after some micro-glitches, but not all. The secular changes in pulse width have three possible cyclic periods, that match with X-ray periodicities of a helical jet that are interpreted as free precession.Comment: 6 pages, 8 figures. Accepted for publication in The Astrophysical Journa

    Radio polarization measurements from RRAT J1819-1458

    Get PDF
    We present the first polarization measurements of the radio emission from RRAT J1819−-1458. Our observations, conducted in parallel to regular timing sessions, have yielded a small number of bright and polarized pulses. The polarization characteristics and integrated profile resemble those of normal pulsars with average spin-down energy (Edot): moderate to low linear polarization in the integrated profile despite relatively high polarization in the individual pulses. On average, a small degree of circular polarization is also observed. The polarization position angle executes a remarkably smooth, steep S-shaped curve, interrupted by two orthogonal jumps. Based on the shape of the PA swing, we place some constraints on the emission geometry. We compare these polarization properties to those of other radio emitting neutron star populations, including young pulsars, pulsars with a high surface magnetic field and radio emitting magnetars. From the polarization measurements, the Faraday rotation measure of this RRAT is derived.Comment: Accepted for publication in MNRAS letter

    Timing stability of millisecond pulsars and prospects for gravitational-wave detection

    Get PDF
    Analysis of high-precision timing observations of an array of approx. 20 millisecond pulsars (a so-called "timing array") may ultimately result in the detection of a stochastic gravitational-wave background. The feasibility of such a detection and the required duration of this type of experiment are determined by the achievable rms of the timing residuals and the timing stability of the pulsars involved. We present results of the first long-term, high-precision timing campaign on a large sample of millisecond pulsars used in gravitational-wave detection projects. We show that the timing residuals of most pulsars in our sample do not contain significant low-frequency noise that could limit the use of these pulsars for decade-long gravitational-wave detection efforts. For our most precisely timed pulsars, intrinsic instabilities of the pulsars or the observing system are shown to contribute to timing irregularities on a five-year timescale below the 100 ns level. Based on those results, realistic sensitivity curves for planned and ongoing timing array efforts are determined. We conclude that prospects for detection of a gravitational-wave background through pulsar timing array efforts within five years to a decade are good.Comment: 21 pages, 5 figures, submitted to MNRA

    The Performance and Calibration of the CRAFT Fly's Eye Fast Radio Burst Survey

    Full text link
    Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in fly's eye mode. This is the first extensive astronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and total exposure of this survey, using the pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e.\ Vela) as calibrators. The design of the survey allows us to benchmark effects due to PAF beamshape, antenna-dependent system noise, radio-frequency interference, and fluctuations during commissioning on timescales from one hour to a year. Observation time, solid-angle, and search efficiency are calculated as a function of FRB fluence threshold. Using this metric, effective survey exposures and sensitivities are calculated as a function of the source counts distribution. The implied FRB rate is significantly lower than the 3737\,sky−1^{-1}\,day−1^{-1} calculated using nominal exposures and sensitivities for this same sample by \citet{craft_nature}. At the Euclidean power-law index of −1.5-1.5, the rate is 10.7−1.8+2.7 (sys) ± 3 (stat)10.7_{-1.8}^{+2.7}\,{\rm (sys)} \, \pm \, 3\,{\rm (stat)}\,sky−1^{-1}\,day−1^{-1} above a threshold of 57±6 (sys)57\pm6\,{\rm (sys)}\,Jy\,ms, while for the best-fit index for this sample of −2.1-2.1, it is 16.6−1.5+1.9 (sys) ±4.7 (stat)16.6_{-1.5}^{+1.9} \,{\rm (sys)}\, \pm 4.7\,{\rm (stat)}\,sky−1^{-1}\,day−1^{-1} above a threshold of 41.6±1.5 (sys)41.6\pm1.5\,{\rm (sys)}\,Jy\,ms. This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.Comment: 21 pages, 15 figures, 2 tables, accepted for publication in PAS

    The first VLBI image of an Infrared-Faint Radio Source

    Get PDF
    Context: To investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.Comment: Accepted for publication in Astronomy and Astrophysics, 5 pages, needs aa.cl

    Discovery of Five Recycled Pulsars in a High Galactic Latitude Survey

    Get PDF
    We present five recycled pulsars discovered during a 21-cm survey of approximately 4,150 deg^2 between 15 deg and 30 deg from the galactic plane using the Parkes radio telescope. One new pulsar, PSR J1528-3146, has a 61 ms spin period and a massive white dwarf companion. Like many recycled pulsars with heavy companions, the orbital eccentricity is relatively high (~0.0002), consistent with evolutionary models that predict less time for circularization. The four remaining pulsars have short spin periods (3 ms < P < 6 ms); three of these have probable white dwarf binary companions and one (PSR J2010-1323) is isolated. PSR J1600-3053 is relatively bright for its dispersion measure of 52.3 pc cm^-3 and promises good timing precision thanks to an intrinsically narrow feature in its pulse profile, resolvable through coherent dedispersion. In this survey, the recycled pulsar discovery rate was one per four days of telescope time or one per 600 deg^2 of sky. The variability of these sources implies that there are more millisecond pulsars that might be found by repeating this survey.Comment: 15 pages, 3 figures, accepted for publication in Ap

    High-velocity OH megamasers in IRAS 20100-4156: Evidence for a Supermassive Black Hole

    Full text link
    We report the discovery of new, high-velocity narrow-line components of the OH megamaser in IRAS 20100-4156. Results from the Australian Square Kilometre Array Pathfinder (ASKAP)'s Boolardy Engineering Test Array (BETA) and the Australia Telescope Compact Array (ATCA) provide two independent measurements of the OH megamaser spectrum. We found evidence for OH megamaser clumps at −-409 and −-562 km/s (blue-shifted) from the systemic velocity of the galaxy, in addition to the lines previously known. The presence of such high velocities in the molecular emission from IRAS 20100−-4156 could be explained by a ~50 pc molecular ring enclosing an approximately 3.8 billion solar mass black hole. We also discuss two alternatives, i.e. that the narrow-line masers are dynamically coupled to the wind driven by the active galactic nucleus or they are associated with two separate galactic nuclei. The comparison between the BETA and ATCA spectra provides another scientific verification of ASKAP's BETA. Our data, combined with previous measurements of the source enabled us to study the variability of the source over a twenty-six year period. The flux density of the brightest OH maser components has reduced by more than a factor of two between 1988 and 2015, whereas a secondary narrow-line component has more than doubled in the same time. Plans for high-resolution VLBI follow-up of this source are discussed, as are prospects for discovering new OH megamasers during the ASKAP early science program.Comment: Accepted to MNRAS. Seven pages, three figure

    Rotation measure variations for 20 millisecond pulsars

    Full text link
    We report on variations in the mean position angle of the 20 millisecond pulsars being observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is found that the observed variations are dominated by changes in the Faraday rotation occurring in the Earth's ionosphere. Two ionospheric models are used to correct for the ionospheric contribution and it is found that one based on the International Reference Ionosphere gave the best results. Little or no significant long-term variation in interstellar RM was found with limits typically about 0.1 rad m−2^{-2} yr−1^{-1} in absolute value. In a few cases, apparently significant RM variations over timescales of a few 100 days or more were seen. These are unlikely to be due to localised magnetised regions crossing the line of sight since the implied magnetic fields are too high. Most probably they are statistical fluctuations due to random spatial and temporal variations in the interstellar electron density and magnetic field along the line of sight.Comment: Accepted for publication in Astrophysics & Space Scienc

    On detection of the stochastic gravitational-wave background using the Parkes pulsar timing array

    Get PDF
    We search for the signature of an isotropic stochastic gravitational-wave background in pulsar timing observations using a frequency-domain correlation technique. These observations, which span roughly 12 yr, were obtained with the 64-m Parkes radio telescope augmented by public domain observations from the Arecibo Observatory. A wide range of signal processing issues unique to pulsar timing and not previously presented in the literature are discussed. These include the effects of quadratic removal, irregular sampling, and variable errors which exacerbate the spectral leakage inherent in estimating the steep red spectrum of the gravitational-wave background. These observations are found to be consistent with the null hypothesis, that no gravitational-wave background is present, with 76 percent confidence. We show that the detection statistic is dominated by the contributions of only a few pulsars because of the inhomogeneity of this data set. The issues of detecting the signature of a gravitational-wave background with future observations are discussed.Comment: 12 pages, 8 figures, 7 tables, accepted for publication in MNRA
    • …
    corecore