32 research outputs found

    Effects of training in the Morris water maze on the spatial learning acquisition and VAChT expression in male rats

    Get PDF
    "n  "n  Background and the purpose of the study: It has been well established that cholinergic pathway plays an important role in learning and memory processes. The present study was designed to evaluate the effects of Morris water maze (MWM) training on spatial memory acquisition and expression of the vesicular acetylcholine transporter (VAChT) in male rats. "n  Methods: In this study, training trials of all groups of animals were conducted in the MWM task. Rats received one training session consisting of four trials per day which continued for another four consecutive days. Controls received visible platform MWM training. The escape latency, the traveled distance and swimming speed for each rat were recorded and used to evaluate the performance of the animal during training period. For evaluation of expression of VAChT protein levels, brain tissues from animals in each experiment were obtained immediately after the last trial on the related experimental day and processed for immunohistochemistry staining and western blotting analysis. "n  Results: There was a significant difference between animals subjected to one day training and those receiving four days of training in escape latency and travel distance. There were an apparent increase in VAChT immunoreactivity in the medial septal area (MSA) and CA1 region of the hippocampus in one day and four day trained animals compared with controls (visible group). Quantitative immunostaining analysis by optical density measurements in the CA1 region and evaluation of immunopositive neurons in medial septal area of brain sections confirmed qualitative findings. Assessment of VAChT protein level expression in hippocampus by western blotting evaluation showed the same pattern of immunohistochemistry results. "n  Conclusion: Overall, results of this study reveal changes in cholinergic neuron activity in different stages of training in the MWM task. Data suggest that there is a significant level of cholinergic neuronal activity during early stages of the training especially in the hippocampus region that may contribute to the apparent increase in VAChT expression

    Prolonged maternal separation induces undernutrition and systemic inflammation with disrupted hippocampal development in mice

    Get PDF
    Objective: Prolonged maternal separation (PMS) in the first 2 wk of life has been associated with poor growth with lasting effects in brain structure and function. This study aimed to investigate whether PMS-induced undernutrition could cause systemic inflammation and changes in nutrition-related hormonal levels, affecting hippocampal structure and neurotransmission in C57BL/6J suckling mice. Methods: This study assessed mouse growth parameters coupled with insulin-like growth factor-1 (IGF-1) serum levels. In addition, leptin, adiponectin, and corticosterone serum levels were measured following PMS. Hippocampal stereology and the amino acid levels were also assessed. Furthermore, we measured myelin basic protein and synapthophysin (SYN) expression in the overall brain tissue and hippocampal SYN immunolabeling. For behavioral tests, we analyzed the ontogeny of selected neonatal reflexes. PMS was induced by separating half the pups in each litter from their lactating dams for defined periods each day (4 h on day 1, 8 h on day 2, and 12 h thereafter). A total of 67 suckling pups were used in this study. Results: PMS induced significant slowdown in weight gain and growth impairment. Significant reductions in serum leptin and IGF-1 levels were found following PMS. Total CA3 area and volume were reduced, specifically affecting the pyramidal layer in PMS mice. CA1 pyramidal layer area was also reduced. Overall hippocampal SYN immunolabeling was lower, especially in CA3 field and dentate gyrus. Furthermore, PMS reduced hippocampal aspartate, glutamate, and gammaaminobutyric acid levels, as compared with unseparated controls. Conclusion: These findings suggest that PMS causes significant growth deficits and alterations in hippocampal morphology and neurotransmission.This work was supported in part by National Institutes of Health (NIH) research grant 5R01HD053131, funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the NIH Office of Dietary Supplements, and Brazilian grants from CNPq and CAPES (Grant # RO1 HD053131). The authors would like to thank Dr. Patricia Foley for veterinarian technical support and Dr. Jose Paulo Andrade for the excellent comments and suggestions to improve this manuscript. N.S. contributed with the stereological studies. I.L.F. and R.B.O. contributed with the behavioral studies. I.L.F., R.B.O., and R.L.G. contributed with the study design, study analysis, and manuscript preparation. G.A.M. and P.B.F. contributed with neurochemical brain analyses. J.I.A.L. and G.M.A. contributed with hormonal and CRP serum analyses. D.G.C., K.M.C., and R.S.R. contributed with animal experimentation and data collection

    A Morphometeric Study on CA3 Hippocampal Field in Young Rats Following Maternal Administration of Boswellia Serrata Resin During Gestation

    No full text
    Abstract Objective It has previously been shown that prenatal maternal administration of Boswellia serrata gum resin (Frankincense) improved learning and memory performance associated with an increase in the size of neuronal bodies in CA3 (Cornu Ammonis) of hippocampus. Continuing the previous work, a morphometric study was designed on CA3 field to examine precisely the effect of prenatal administration of frankincense on the structure of this region. Materials and Methods 2 months-old male Wistar rats whose mothers were given orally the aqueous extract of the Boswellia serrata (0.1 g/kg/day) during gestation (3 weeks) were anesthetized and transcardially perfused with phosphate-buffered solution of 4% formaldehyde and 1% glutaraldehyde (n=8). Each brain was removed and divided into two hemispheres. One hemisphere selected at random for estimating the volumes of CA3 layers, and the other for morphometeric analysis of CA3 neuronal dendrites. The Cavalieri principle employed to estimate the volumes and a quantitative Golgi study used to analyse the dendritic arborizations. Results Comparisons revealed that the control rats had lower volumes than the experimental animals in all layers of CA3 (p<0.05). It was also indicated that the neurons of CA3 in experimental rats had more dendritic segments (31.25±3.33) than the controls (27.5±2.67), p<0.05. The dendritic branching density was higher in experimental rats relative to that found in the control rats. Conclusion Results of this study provide a neuroanatomical basis that may be relevant to the early reported enhancement of learning and memory abilities in offspring

    Regulation of Hippocampal cGMP Levels as a Candidate to Treat Cognitive Deficits in Huntington's Disease

    Get PDF
    Huntington"s disease (HD) patients and mouse models show learning and memory impairment associated with hippocampal dysfunction. The neuronal nitric oxide synthase/3',5'-cyclic guanosine monophosphate (nNOS/cGMP) pathway is implicated in synaptic plasticity, and in learning and memory processes. Here, we examined the nNOS/cGMP pathway in the hippocampus of HD mice to determine whether it can be a good therapeutic target for cognitive improvement in HD. We analyzed hippocampal nNOS and phosphodiesterase (PDE) 5 and 9 levels in R6/1 mice, and cGMP levels in the hippocampus of R6/1, R6/2 and Hdh Q7/Q111 mice, and of HD patients. We also investigated whether sildenafil, a PDE5 inhibitor, could improve cognitive deficits in R6/1 mice. We found that hippocampal cGMP levels were 3-fold lower in 12-week-old R6/1 mice, when they show deficits in object recognition memory and in passive avoidance learning. Consistent with hippocampal cGMP levels, nNOS levels were down-regulated, while there were no changes in the levels of PDE5 and PDE9 in R6/1 mice. A single intraperitoneal injection of sildenafil (3 mg/Kg) immediately after training increased cGMP levels, and improved memory in R6/1 mice, as assessed by using the novel object recognition and the passive avoidance test. Importantly, cGMP levels were also reduced in R6/2 mouse and human HD hippocampus. Therefore, the regulation of hippocampal cGMP levels can be a suitable treatment for cognitive impairment in HD
    corecore