152 research outputs found

    Differences in genotype and virulence among four multidrug-resistant <i>Streptococcus pneumoniae</i> isolates belonging to the PMEN1 clone

    Get PDF
    We report on the comparative genomics and characterization of the virulence phenotypes of four &lt;i&gt;S. pneumoniae&lt;/i&gt; strains that belong to the multidrug resistant clone PMEN1 (Spain&lt;sup&gt;23F&lt;/sup&gt; ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinant

    Machines vs. Ensembles: Effective MAPK Signaling through Heterogeneous Sets of Protein Complexes

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author’s publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Despite the importance of intracellular signaling networks, there is currently no consensus regarding the fundamental nature of the protein complexes such networks employ. One prominent view involves stable signaling machines with well-defined quaternary structures. The combinatorial complexity of signaling networks has led to an opposing perspective, namely that signaling proceeds via heterogeneous pleiomorphic ensembles of transient complexes. Since many hypotheses regarding network function rely on how we conceptualize signaling complexes, resolving this issue is a central problem in systems biology. Unfortunately, direct experimental characterization of these complexes has proven technologically difficult, while combinatorial complexity has prevented traditional modeling methods from approaching this question. Here we employ rule-based modeling, a technique that overcomes these limitations, to construct a model of the yeast pheromone signaling network. We found that this model exhibits significant ensemble character while generating reliable responses that match experimental observations. To contrast the ensemble behavior, we constructed a model that employs hierarchical assembly pathways to produce scaffold-based signaling machines. We found that this machine model could not replicate the experimentally observed combinatorial inhibition that arises when the scaffold is overexpressed. This finding provides evidence against the hierarchical assembly of machines in the pheromone signaling network and suggests that machines and ensembles may serve distinct purposes in vivo. In some cases, e.g. core enzymatic activities like protein synthesis and degradation, machines assembled via hierarchical energy landscapes may provide functional stability for the cell. In other cases, such as signaling, ensembles may represent a form of weak linkage, facilitating variation and plasticity in network evolution. The capacity of ensembles to signal effectively will ultimately shape how we conceptualize the function, evolution and engineering of signaling networks

    Explorative visual analytics on interval-based genomic data and their metadata

    Get PDF
    Background: With the wide-spreading of public repositories of NGS processed data, the availability of user-friendly and effective tools for data exploration, analysis and visualization is becoming very relevant. These tools enable interactive analytics, an exploratory approach for the seamless "sense-making" of data through on-the-fly integration of analysis and visualization phases, suggested not only for evaluating processing results, but also for designing and adapting NGS data analysis pipelines. Results: This paper presents abstractions for supporting the early analysis of NGS processed data and their implementation in an associated tool, named GenoMetric Space Explorer (GeMSE). This tool serves the needs of the GenoMetric Query Language, an innovative cloud-based system for computing complex queries over heterogeneous processed data. It can also be used starting from any text files in standard BED, BroadPeak, NarrowPeak, GTF, or general tab-delimited format, containing numerical features of genomic regions; metadata can be provided as text files in tab-delimited attribute-value format. GeMSE allows interactive analytics, consisting of on-the-fly cycling among steps of data exploration, analysis and visualization that help biologists and bioinformaticians in making sense of heterogeneous genomic datasets. By means of an explorative interaction support, users can trace past activities and quickly recover their results, seamlessly going backward and forward in the analysis steps and comparative visualizations of heatmaps. Conclusions: GeMSE effective application and practical usefulness is demonstrated through significant use cases of biological interest. GeMSE is available at http://www.bioinformatics.deib.polimi.it/GeMSE/ , and its source code is available at https://github.com/Genometric/GeMSEunder GPLv3 open-source license

    Phase I/II study of oral etoposide plus GM-CSF as second-line chemotherapy in platinum-pretreated patients with advanced ovarian cancer

    Get PDF
    The aim of this phase I/II study was to determine the maximum tolerated dose (MTD) and the dose-limiting toxicities of chronic oral etoposide given on days 1–10 followed by rescue with subcutaneous (s.c.) granulocyte-macrophage colony-stimulating factor (GM-CSF) on days 12–19 as second-line chemotherapy in platinum-pretreated patients (pts) with advanced ovarian carcinoma. Cohorts of three to six pts were treated with doses of oral etoposide from 750 mg m−2 cycle−1 escalated to 1250 mg m−2 cycle−1 over 10 days, every 3 weeks. Subcutanous GM-CSF, 400 μg once daily, days 12–19, was added if dose-limiting granulocytopenia was encountered. In total, 18 pts with a median Karnofsky index of 80% (range, 70–100%) and a median time elapsed since the last platinum dose of 10 months (range, 1–24 months), 30% of whom showed visceral metastases, were treated at four dose levels (DLs) of oral etoposide on days 1–10 of each cycle as follows: DL 1, 750 mg m−2 cycle−1, without GM-CSF, three pts; DL 2, 1000 mg m−2 cycle−1, without GM-CSF, three pts; DL 3, 1000 mg m−2 cycle−1, with GM-CSF, six pts; and DL 4, 1250 mg m−2 cycle−1, with GM-CSF, six pts. All pts were assessable for toxicity and 16 pts for response. Dose-limiting toxicity (DLT) was reached at DL 4 by three of six pts, showing World Health Organization (WHO) toxicity grade 4. One patient died from gram-negative sepsis associated with granulocytopenia grade 4. Two more pts developed uncomplicated granulocytopenia grade 4. Thus, we recommend that DL 3 can be used for further phase II evaluation (i.e. oral etoposide 1000 mg m−2 cycle−1, days 1–10, followed by s.c. GM-CSF 400 μg, days 12–19). The clinical complete or partial responses in each patient cohort were: DL 1, one of three pts; DL 2, one of three pts; DL 3, three of five pts; and DL 4, two of five pts. In conclusion, in this phase I/II study, we defined the MTD and the dose recommended for the therapy with oral etoposide given over 10 days followed by s.c. GM-CSF in platinum-pretreated patients with advanced ovarian cancer. Our data demonstrate encouraging activity of this regimen and strongly support its further investigation in a phase II study

    Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species

    Get PDF
    Background Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group. Results Despite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes, genes present in not all, but more than one strain, was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant 13 evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence. Conclusion Genetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan genome guarantees the species a quick and economical response to diverse environments

    Bad news from Fallujah

    Get PDF
    This study uses the thematic analysis developed by the Glasgow University Media Group to explore how the US, UK and German national press covered the US/Coalition assault on the Iraqi city of Fallujah in November 2004. The study relies on quantitative and qualitative full text content analyses to assess 428 news, editorial and commentary items. The article suggests that, while government and military officials of the US/Coalition had argued the military ‘operation’ was necessary to secure Iraq and defeat an ‘insurgency’, organisations and actors from Iraqi society refer to the ‘operation’ as ‘collective punishment’ and a ‘massacre’ that targeted the Iraqi population. The article investigates how the press represented each of these perspectives. The findings suggest that the press overemphasised the US/Coalition perspective despite striking counter evidence. Critical aspects of coverage largely focused on tactical elements of the military dimension of the event. The article concludes that such findings are in accord with hegemonic models of media performance

    Systematic meta-review of supported self-management for asthma: a healthcare perspective

    Get PDF
    BACKGROUND: Supported self-management has been recommended by asthma guidelines for three decades; improving current suboptimal implementation will require commitment from professionals, patients and healthcare organisations. The Practical Systematic Review of Self-Management Support (PRISMS) meta-review and Reducing Care Utilisation through Self-management Interventions (RECURSIVE) health economic review were commissioned to provide a systematic overview of supported self-management to inform implementation. We sought to investigate if supported asthma self-management reduces use of healthcare resources and improves asthma control; for which target groups it works; and which components and contextual factors contribute to effectiveness. Finally, we investigated the costs to healthcare services of providing supported self-management. METHODS: We undertook a meta-review (systematic overview) of systematic reviews updated with randomised controlled trials (RCTs) published since the review search dates, and health economic meta-analysis of RCTs. Twelve electronic databases were searched in 2012 (updated in 2015; pre-publication update January 2017) for systematic reviews reporting RCTs (and update RCTs) evaluating supported asthma self-management. We assessed the quality of included studies and undertook a meta-analysis and narrative synthesis. RESULTS: A total of 27 systematic reviews (n = 244 RCTs) and 13 update RCTs revealed that supported self-management can reduce hospitalisations, accident and emergency attendances and unscheduled consultations, and improve markers of control and quality of life for people with asthma across a range of cultural, demographic and healthcare settings. Core components are patient education, provision of an action plan and regular professional review. Self-management is most effective when delivered in the context of proactive long-term condition management. The total cost (n = 24 RCTs) of providing self-management support is offset by a reduction in hospitalisations and accident and emergency visits (standard mean difference 0.13, 95% confidence interval -0.09 to 0.34). CONCLUSIONS: Evidence from a total of 270 RCTs confirms that supported self-management for asthma can reduce unscheduled care and improve asthma control, can be delivered effectively for diverse demographic and cultural groups, is applicable in a broad range of clinical settings, and does not significantly increase total healthcare costs. Informed by this comprehensive synthesis of the literature, clinicians, patient-interest groups, policy-makers and providers of healthcare services should prioritise provision of supported self-management for people with asthma as a core component of routine care. SYSTEMATIC REVIEW REGISTRATION: RECURSIVE: PROSPERO CRD42012002694 ; PRISMS: PROSPERO does not register meta-reviews

    Reticular synthesis and the design of new materials

    Full text link
    The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62718/1/nature01650.pd

    Streptococcus pneumoniae in Biofilms Are Unable to Cause Invasive Disease Due to Altered Virulence Determinant Production

    Get PDF
    It is unclear whether Streptococcus pneumoniae in biofilms are virulent and contribute to development of invasive pneumococcal disease (IPD). Using electron microscopy we confirmed the development of mature pneumococcal biofilms in a continuous-flow-through line model and determined that biofilm formation occurred in discrete stages with mature biofilms composed primarily of dead pneumococci. Challenge of mice with equal colony forming units of biofilm and planktonic pneumococci determined that biofilm bacteria were highly attenuated for invasive disease but not nasopharyngeal colonization. Biofilm pneumococci of numerous serotypes were hyper-adhesive and bound to A549 type II pneumocytes and Detroit 562 pharyngeal epithelial cells at levels 2 to 11-fold greater than planktonic counterparts. Using genomic microarrays we examined the pneumococcal transcriptome and determined that during biofilm formation S. pneumoniae down-regulated genes involved in protein synthesis, energy production, metabolism, capsular polysaccharide (CPS) production, and virulence. We confirmed these changes by measuring CPS by ELISA and immunoblotting for the toxin pneumolysin and the bacterial adhesins phosphorylcholine (ChoP), choline-binding protein A (CbpA), and Pneumococcal serine-rich repeat protein (PsrP). We conclude that biofilm pneumococci were avirulent due to reduced CPS and pneumolysin production along with increased ChoP, which is known to bind C-reactive protein and is opsonizing. Likewise, biofilm pneumococci were hyper-adhesive due to selection for the transparent phase variant, reduced CPS, and enhanced production of PsrP, CbpA, and ChoP. These studies suggest that biofilms do not directly contribute to development of IPD and may instead confer a quiescent mode of growth during colonization
    corecore