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Abstract

Background: With the wide-spreading of public repositories of NGS processed data, the availability of user-friendly
and effective tools for data exploration, analysis and visualization is becoming very relevant. These tools enable
interactive analytics, an exploratory approach for the seamless “sense-making” of data through on-the-fly integration
of analysis and visualization phases, suggested not only for evaluating processing results, but also for designing and
adapting NGS data analysis pipelines.

Results: This paper presents abstractions for supporting the early analysis of NGS processed data and their
implementation in an associated tool, named GenoMetric Space Explorer (GeMSE). This tool serves the needs of the
GenoMetric Query Language, an innovative cloud-based system for computing complex queries over heterogeneous
processed data. It can also be used starting from any text files in standard BED, BroadPeak, NarrowPeak, GTF, or
general tab-delimited format, containing numerical features of genomic regions; metadata can be provided as text
files in tab-delimited attribute-value format. GeMSE allows interactive analytics, consisting of on-the-fly cycling among
steps of data exploration, analysis and visualization that help biologists and bioinformaticians in making sense of
heterogeneous genomic datasets. By means of an explorative interaction support, users can trace past activities and
quickly recover their results, seamlessly going backward and forward in the analysis steps and comparative
visualizations of heatmaps.

Conclusions: GeMSE effective application and practical usefulness is demonstrated through significant use cases of
biological interest. GeMSE is available at http://www.bioinformatics.deib.polimi.it/GeMSE/, and its source code is
available at https://github.com/Genometric/GeMSE under GPLv3 open-source license.

Keywords: Genomic data analysis, exploration, visualization, Interactive and visual analytics, Comparative evaluation,
Next Generation Sequencing

Background
High-throughput sequencing technologies generate high
amounts of genomic, epigenomic and transcriptomic
data regarding multiple genomes in different conditions.
Complex pipelines are used for selecting high-quality
sequenced raw data, aligning them to a reference genome,
and then calling specific features on the aligned data, such
as DNA mutations, transcription factor bindings, histone
modifications, DNAmethylations, gene expressions [1, 2].
Thanks to large international consortia (e.g., Encyclopedia
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of DNA Elements (ENCODE) [3], Roadmap Epigenomics
[4], The Cancer Genome Atlas (TCGA) [5], and the 1000
Genomes Project [6]), such data are organized within
open repositories, which provide easy access to raw and
processed datasets. The availability of these datasets is
reshaping modern biology: researchers can complement
their own experimental datasets with a large body of pub-
lic data and knowledge, and can derive relevant results
which are just based upon secondary analysis of open
data.
GenoMetric Query Language (GMQL) [7] is an inno-

vative cloud-based system to efficiently compute arbi-
trarily complex queries over heterogeneous processed
datasets, taking into account both genomic region features
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and sample global characteristics (i.e., metadata). GMQL
queries apply to genomic datasets of Next Generation
Sequencing (NGS) processed data to extract interesting
data samples and their genomic regions and metadata;
such valuable GMQL output needs further data explo-
ration and analysis to support biological interpretation of
results.
This paper presents a rich set of abstractions for data

analysis, exploration and visualization, and their imple-
mentation in an associated tool, named GenoMetric
Space Explorer (GeMSE); GeMSE supports primitives for
data explorations spanning from select, sort, and discretize,
to clustering, and pattern extraction. GeMSE seamlessly
manages metadata together with genomic region data and
shows them aggregated for any of the result clustering pat-
terns. GeMSE leverages on GMQL as its back-end tertiary
data retrieval framework, but can be used on any text files
in standard BED (Browser Extensible Data), BroadPeak,
NarrowPeak, GTF (General Transfer Format), or general
tab-delimited format, containing data regarding features
of genomic regions; metadata can also be provided as text
files, in tab-delimited attribute-value format.
Genomic data visualization builds on two orthogo-

nal concepts: genome browsing and quantitative visu-
alization. A genome browser, pioneered by Artemis [8]
and popularized by the University of California at Santa
Cruz (UCSC) Genome Browser [9], is commonly used
for looking at genome features within a given portion
of the genome. In the realm of quantitative visualiza-
tions, clustering techniques and heatmaps (proposed out-
side biology) were used by Eisen and colleagues [10] for
the evaluation of microarray gene expression data; they
have been implemented in some stand-alone tools (e.g.,
GENE-E [11]) and they are supported in many sta-
tistical software, including Matlab, Mathematica and
R/Bioconductor [12], as well as scripting languages such
as Python. Lately, they have been applied to NGS data,
and implemented within a few tools specifically devoted
to such data (e.g., seqMINER [13], ngs.plot [14], or Micro-
Scope [15]). These tools are mainly designed to be used
on NGS raw or aligned data; unless they are executed on
very powerful servers, they can handle only a few data
files at a time, limiting the possibility of quickly comparing
multiple conditions and datasets simultaneously.
GeMSE can be regarded as enabler of interactive ana-

lytics (IA), a promising exploratory approach for the
seamless “sense-making” of data through on-the-fly inte-
gration of analysis and visualization tools. Interactive
analysis is suggested not only for evaluating processing
results, but also for designing and adapting NGS data
analysis pipelines. Remarkably different results could be
produced with slightly different parameter settings of data
production pipelines (e.g., for feature calling); choosing
a “correct” parameter setting commonly breaks down

to a difficult cycle of repeatedly tweaking parameters,
re-running the analysis, and visually inspecting the
results. Tweaking the parameters of the tools used for data
generation is context-specific and could consist of tweak-
ing parameters of GMQL scripts or Galaxy workflows
[16]; other examples of IA frameworks include Cytosplore
[17], focused onmass cytometry data for immune systems
cellular composition studies, or Trackster [18], which
leverages Galaxy’s comprehensive data analysis frame-
work (spanning from primary to tertiary analysis).
Data exploration is well supported by application suites

such as Mathlab, Mathematica, Maple or SageMath (in
Python), or scripting languages such as Python, R, Perl,
or even shell scripting; however, not everyone has the
required scripting/coding ability. GeMSE enables data
exploration using intuitive visual interfaces for everyone,
without need for any scripting, making data exploration
seamless.
A key component of explorative data analysis, is to be

able to perform actions in a non-sequential and repeat-
able way. To enable such data exploration, GeMSE adapts
a state-space graph model, where nodes/states are the
data and transition are the actions performed on the data.
Users can choose any node, and perform any number of
actions on a node (hence creating a new node), while
all nodes are efficiently cached in memory, enabling the
creation of (theoretically) an unlimited number of states.
In general, every action by the user generates a new
state/node, which can then be used in subsequent analy-
ses, downloaded, or visualized. Nodes are immutable, i.e.,
once a node is generated, it cannot be changed (changes
happen as new nodes). A key advantage of this feature is
that if the user makes a mistake or wants to experiment
with different parameter settings, he/she can always go
back to the original data.

Implementation
Datasets in GMQL consist of one or more items, called
samples, each of them associated with one experimen-
tal condition; each sample, in turn, consists of data and
metadata. Data are genomic regions, expressing the result
of a calling process that extracts genomic features (e.g.,
DNA mutations, gene expression scores, peaks of bind-
ing enrichment, epigenetic modifications) frommeasured
(epi)genome signals. Metadata are attribute-value pairs
expressing arbitrary properties of samples (e.g., the related
tissue or cell-line, the technology used to obtain it, the
experimental method applied; if the sample is human, it
may include phenotypical information, such as the donor’s
sex, age and disease status).

Genometric space
A genometric space is produced by a specific GMQL
operation, called MAP [7], which applies to two datasets,



Jalili et al. BMC Bioinformatics  (2017) 18:536 Page 3 of 15

denoted as reference and experiment (see panel b on
Fig. 1):

• The reference dataset consists of a single sample; it
typically includes genomic regions corresponding to
genes or exons, representing the coding portions of
the genome, or transcription regulatory regions;
however, the reference sample can be an arbitrary set
of regions from the genome, possibly extracted by
means of GMQL queries.

• The experiment dataset consists of multiple, possibly
heterogeneous, samples, each constituted by multiple
regions (similar to heterogeneous tracks that can be
observed on a genome browser); experiment samples
can be produced by different sources, while we

expect each experiment sample to be produced by a
single source.

The MAP operation produces a matrix structure, called
genometric space, where each row is associated with a
reference region, each column refers to a sample, and
each matrix entry is computed by means of an aggre-
gate function applied to the values of a selected attribute
of the experiment regions of the sample that overlap the
reference region (see panel c on Fig. 1). Formally:

• The MAP operation applies to a reference sample R
and to several experiment samples Sj, and has two
parameters: an attribute A of the regions of Sj and an
aggregate function G.

A

A

B

B

C

C

Fig. 1 Importing data and building genometric space. A sample is represented with two files: data and metadata. To enable exploring samples
using both quantitative and descriptive aspects, GeMSE loads both files. The flowchart shows the flow of loading the files. Panel A shows an
example of data (in CSV/BED and GTF format), and metadata of a sample. Panel B depicts an example of mapping heterogeneous samples using a
reference sample (multiple values are aggregated using average function). Panel C illustrates a genometric space, and how data are organized to
form it. Columns (samples) and rows (regions) have column and row IDs which are respectively sample and regions IDs in parsed data. The IDs are
hidden to the user, and are used to label columns and rows with any attribute that the user chooses (e.g., the treatment and feature name attributes
for labeling columns and rows respectively)
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• The result of the MAP operation is a matrix M, whose
entriesmi,j are each built from the region ri of the
reference and the sample Sj of the experiment dataset
by considering all regions rk,j of the Sj sample having
a nonempty intersection with ri, then considering the
bag (i.e., set) Bi,j of all the values vk,j that the attribute
A gets for the rk,j regions, and then applying the
aggregate function G to Bi,j.

We support the classic aggregate functions COUNT, MIN,
MAX, SUM, AVERAGE, and MEDIAN; COUNT is used to
count the number of experiment sample regions inter-
secting a reference region, and requires no indication of
a specific attribute. The 2 × 2 matrix in panel c on Fig. 1
represents 2 genomic regions and 2 experiment samples;
values are ((149, 28), (80, 0)). The matrix is organized in
GeMSE with the reference regions as rows and the experi-
ment samples as columns ; this choice is preferred because
there are typically many more regions than experiments.
When GeMSE is used in pipeline with GMQL, it reads

the output of a GMQL MAP operation directly; when
instead GeMSE is used as a stand-alone tool, it starts by
applying a MAP operation to the reference and experi-
ment samples specified by the user (see flowchart, panel
a, and panel b on Fig. 1). Input region data can be read
as formatted according to the standard BED, BroadPeak,
NarrowPeak, or GTF formats, or in the form of a general
BED-like tab-delimited format. Required fields of each
region are chromosome (i.e., chr), start, and end, as in
the BED format. Additional fields are considered as ref-
erenced by the correspondent input column header; e.g.,
GTF files in addition contain the fields source, feature (i.e.,
feature name), score, strand, frame, and a group field which
is a text string containing a set of attribute-value pairs sep-
arated by a single space. Metadata can also be provided
as separate tab-delimited text files, having the same name
as the sample file to which they refer to, and an extension
“.meta”, storing items in a pair of fields, respectively called

attribute and value. The flowchart in Fig. 1 shows that files
of heterogeneous formats can be given in input to GeMSE.

Interactive data exploration model
GeMSE data exploration consists of three iterative phases,
illustrated on Fig. 2 and explained as it follows:

• Transition, where a transformation function is
applied on a genometric space resulting in a new
genometric space.

• Analysis, where a genometric space is analyzed using
data analysis functions (e.g., pattern analysis, or
statistical inference).

• Visualization, where a genometric space is visualized
(e.g., on heatmaps or graph views).

In GeMSE, genometric spaces are immutable and inde-
pendent from each other; in other words, once a geno-
metric space is created, it cannot be changed. Therefore,
to enable data exploration, GeMSE organizes genometric
spaces on a state-transition tree, explained in the follow-
ing section. The genometric space transitions and analysis
are explained the subsequent sections.

State-transition tree
Tracking multiple transformations of genometric spaces
is crucial for data exploration. GeMSE tracks such tran-
sitions in a graph data structure called State-Transition
Tree (STT), whose nodes represent different genomet-
ric spaces and whose edges represent the transformations
between genometric spaces (e.g., see Fig. 3). From any
data exploration state, one can view the related geno-
metric space, visualizing it as a table or a heatmap, and
also explore contained patterns (e.g., see Fig. 7, where the
heatmaps labeled A1-A5 and the associated pattern explo-
ration refer to the first sequence of nodes on Fig. 3). STT
visualization facilitates data exploration state examination
and a trial-and-error approach.

Fig. 2 The data exploration model of GeMSE
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Fig. 3 An example of GeMSE State-Transition Tree; it represents the
use-cases illustrated in the demonstration and discussion section of
the paper

GeMSE stores nodes and edges of STT in memory.
However, keeping all the nodes in memory is not an effi-
cient practice, specially if the STT and genometric spaces
are considerably large. Therefore, GeMSE implements the
least recently used caching algorithm [19]. Accordingly,
GeMSE stores the first data exploration state (i.e., the root
of the STT), the genometric space of the n most recent
states (with the n value being user modifiable), and the
transitions of all the states. Least recently used states are
removed from the memory, and if needed they are recon-
structed. This is done first by recursively traversing the
STT from the node to be reconstructed to the closest
cached parent node; then, once the closest cached parent
node is determined, the requested node is reconstructed
by applying the stored transitions from the closest cached
parent node to the requested one. Given that clustering
is computationally expensive, dendrograms, i.e., cluster
hierarchical structures, are always kept in memory to
prevent cluster reconstruction.

State transitions
A state transition takes a state and some arguments
as input, and generates a new state as output. In our
case, a state transition is a data transformation per-
formed during data exploration, and a state represents the
explored data, in case resulting from one of such tran-
sitions. The general data transformations most useful in
data exploration, which we implemented in GeMSE, are:
Extract, Rewrite, Discretize, Sort, Cluster,
and Bi-Cluster. In what follows, we give a semi-formal
description of each of such state transitions as a genomet-
ric space transformation. It is important to note that these
operations are specified in a very simple way by using the
GeMSE tool, with an easy-to-use graphical interface that
prompts, for each transformation, the parameters to be
interactively entered.

Extract
This transformation extracts a sub-space S′ of a geno-
metric space S, given two ranges of columns and rows.
Let [Cl,Cr) and [Ru,Rd) denote ranges for columns (with
left and right bounds) and rows (with up and down
bounds), respectively (inclusive lower-bound, exclusive
higher-bound); the transformation is defined as follows:

S′ = Extract(

[Cl,Cr),
[Ru,Rd))

S

After an Extract operation, the new state in the STT
holds a new genometric space S′, which is a subset of the
input state S (represented in light blue in panel a on Fig. 4).
The data and metadata of the selected samples/rows are
not changed, while the data and metadata of excluded
samples/regions are discarded at the new state.

Rewrite
This transformation maps the values of an input genomet-
ric space S into new values in a new genometric space S′;
if only a portion of S where to apply the transformation
is selected, all the other values of S outside the selected
portion remain unchanged, and the dimensions of S′ are
not modified with respect to those of S. The values of

A

B

C

Fig. 4 An example of Select (panel A), Rewrite (panel B), and
Discretize (panel C) transformations
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S are mapped conditionally; the values of cells [Cl,Cr),
[Ru,Rd) are mapped to a constant V, or logn transformed
(user-defined n), if the values are within the [Vmin,Vmax]i
range. Several ranges may be used in the same Rewrite
transformation, provided that the ranges do not overlap
(e.g., see panel b on Fig. 4). Rewrite is a discrete map-
ping, such that the ranges not necessarily cover all the
values in the input genometric space; the excluded values
remain intact. Each value is changed based on the range
that it falls in, e.g., {[Vmin,Vmax]1 → V1, [Vmin,Vmax]2 →
V2, . . . }. The transformation is defined as follows:

S′ = Rewrite(

[Cl,Cr),
[Ru,Rd),
([Vmin,Vmax] , [V | logn] )+)

S

Discretize
This transformation maps all the values of an input geno-
metric space S to new values in a new genometric space
S′, in case selecting only a portion of S where to apply
the transformation. The difference between the Rewrite
and Discretize transformations is that Rewrite is
a discrete mapping of values, whereas Discretize
is a contiguous mapping; accordingly, the transforma-
tion ranges are specified differently (see panels b and
c on Fig. 4). In Rewrite, users explicitly define the
ranges [Vmin,Vmax]i, which are user-defined independent
ranges and not necessarily contiguous. Conversely, in
Discretize, users define transformation ranges implic-
itly, by using break values (pivots) [Vpivot]i, based onwhich
the transformation ranges are determined automatically.
For instance, referring to panel c on Fig. 4, suppose the
Discretize transformation operates on Natural num-
bers, and takes the pivot value 15 and the new values
10 and 22; then, the Discretize transformation auto-
matically defines the ranges (−∞, 15] and [16,+∞), and
maps the values in these two ranges to 10 and 22, respec-
tively. Note that when this transformation operates on real
numbers, the ranges around a pivot value Vpivot are as
(−∞,Vpivot] and (Vpivot,+∞).
The Discretize transformation has also a NoChange

option, which indicates that the values within a given
range should not be changed. The transformation is
defined as follows:

S′ = Discretize(

[Cl,Cr),
[Ru,Rd),
(Vpivot, [Vb |NoChange] , [Va |NoChange] )+)

S

where Vb and Va are the values with which the values
before and after the Vpivot value are respectively replaced.

Sort
This transformation sorts the rows or columns (R|C) of
an input genometric space S in ascending/descending
order, based on the values of a list of region attributes
(e.g., count, p-value), or of sample metadata (e.g., anti-
body target, disease), and stores the ordered result in a
new genometric space S′. The transformation is defined as
follows:

S′ = Sort(

[R |C] ,
[ASCENDING |DESCENDING] ,
[(Region Attribute)+ | (Sample Metadata)+] )
S

Cluster
This transformation executes the clustering of either
rows or columns (R |C) of an input genometric space
S, and produces as output a clustered genometric space
S′, as well as a dendrogram (hierarchical description of
the various clustering steps) and a heatmap, that plots
the genometric space sorted based on the dendrogram.
The Cluster transformation performs agglomerative
hierarchical clustering by single, average, or complete
linkage (SINGLE |AVERAGE |COMPLETE), using distance
and correlation metrics; GeMSE implements Euclidean
(EU), Manhattan (MA), Earth Movers (EA), Chebyshev
(CH), and Canberra (CA) distance metrics, and Pearson
correlation (PE) metrics. The transformation occurs by
first producing the clustering dendrogram, and then using
the dendrogram for sorting the genometric space rows
(regions) or columns (samples). The transformation is
defined as follows:

S′ = Cluster(

[R |C] ,
[SINGLE |AVERAGE |COMPLETE] ,
[EU |MA |EA |CH |CA |PE] )
S

Bi-cluster
This transformation clusters both rows and columns
simultaneously of an input genometric space S. To imple-
ment it in GeMSE, we used the R package hclust [20] (see
“Availability and requirements” section), which performs
bi-clustering by complete linkage (COMPLETE) using the
Euclidean (EU) distance metrics. GeMSE automatically
creates a script to be executed in R, then runs the script,
and finally imports the generated result (i.e., a heatmap
in .png format). Thus, the Bi-Cluster transformation
in GeMSE does not generate a state that can be used



Jalili et al. BMC Bioinformatics  (2017) 18:536 Page 7 of 15

for further transitions, since GeMSE has access to the
clustering output of R as a heatmap only. The generated
heatmap (i.e., output genometric space representation)
is therefore a leaf node of the state-transition tree. The
transformation is defined as follows:

S′ = Bi-Cluster(

[COMPLETE] ),
[EU] )
S

GeMSE supports other transformations performed by
means of R packages; some of them (e.g., gplots [21])
require first a normalization of the distances of the clus-
tering dendrogram from the leaves to the root; then, the
updated dendrogram is exported to R in Newick tree for-
mat [22], along with the genometric space on which to
apply it and the R script to be run. All these transfor-
mations with R-based implementations produce only the
heatmap representation of the output genometric space;
thus, in the state transition tree all of them generate a leaf
node only, which is not usable for further transitions.

State analysis
An analysis function takes a state, and executes data anal-
ysis function on it. GeMSE implements two commonly
used class of data analysis functions: pattern extraction,
and statistical inference (e.g., statistical hypothesis testing,
or principal component analysis), briefly described in the
following sections.

Pattern extraction
A relevant task in data exploration concerns with the iden-
tification of patterns in the data, and their association with
specific data aspects (e.g., biological features, supporting
biological interpretation of the results).
Within a data matrix (i.e., genometric space), a pattern

can be defined as an ensemble of feature values associated
with a group of rows/columns which are similar based on
such values. These patterns can be discovered through the
Cluster data transformation implemented in GeMSE,
by using either distance (e.g., Euclidean or Manhattan
distance) or correlation (e.g., Pearson correlation) metrics
between vectors of rows/columns containing such feature
values; these vectors are clustered hierarchically, and pat-
terns are extracted by cutting the clustering dendrogram
at a given height. By doing so, the nearest (most similar)
vectors of rows/columns are grouped together, unveiling
a pattern. Patterns can then be explored in GeMSE by
means of:

• Heatmaps, which effectively visualize each pattern
(e.g., panel a on Fig. 5 and panel A5pc on Fig. 7).

• Radial graph [23], where nodes are the pattern
analysis vectors (columns or rows of the genometric

space), and edges are the relations between vectors.
The visualization is interactive, it enforces a radial
ordering of the nodes, while keeps a user-selected
node at the center. Additionally, if selected by the
user, it can color nodes differently, based on the
pattern analysis result (see panel b on Fig. 5).

• Force-directed graph [23]; it is an interactive
visualization forcing a graph view, which can
aggregate nodes belonging to the same pattern
(user-selected, see panel c on Fig. 5).

• Vectors forming the pattern, displayed in forms of
heatmaps (e.g., panels A2p0, A2p1, and A2p2 on
Fig. 7), or tabular views of vector values or metadata
(e.g., the table on Fig. 7).

• Metadata counts, representing the aggregated
occurrences of each metadata attribute-value pair in
each pattern (e.g., the table on Fig. 9); they facilitate
the identification of common/exclusive metadata
within each pattern, and the interpretation of
patterns based on such metadata.

Number of clusters
A key aspect in the described pattern extraction strat-
egy is the choice of where cutting the dendrogram so
as to identify an ideal number of patterns. GeMSE can
suggest the best number of clusters; it does so by tak-
ing advantage of the clustering dendrogram produced
by the Cluster data transformation, and by using the
Elbow method [24]. This method compares the sum of
squared distances between clusters for different number
of clusters, plotted against the number of clusters; the
optimal number of clusters is determined by identifying
an “elbow” in the plot. To identify it, we first determine
the total variance of the distances between the children
of all nodes in the clustering dendrogram (i.e., between
all clusters). Then, we calculate the variance percentage
as the variance of the distances between the children of
the nodes in the dendrogram (i.e., between clusters) at
different dendrogram cutting heights (i.e., for different
number of clusters), divided by the total variance. Finally,
we compare the slope of two consecutive points in the
plot (i.e., the variation of variance percentage for two
consecutive dendrogram cutting heights, that is for two
consecutive numbers of clusters): an “elbow” is where the
difference of slopes between consecutive points is maxi-
mum (see Fig. 8). The pseudocode of the method is given
in Algorithm 1.
Several other methods exist to determine the best num-

ber of clusters, based on gap statistic [25], or on “stopping
rules” [26], or exploiting the Direction Division Partition-
ing principle [27] (i.e., stopping partitioning when cen-
troid scatter value exceeds the maximum cluster scatter
value at any node in the clustering dendrogram). Other
methods are based on maximizing the distance between
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Algorithm 1 Algorithm for dendrogram cutting using the
Elbow criterion.
1: procedure DEFAULTCUTDENDROGRAM(cluster)
2: distance ← get distances between children of all

clusters
3: sigma_total ← calculate variance of distances
4: sigma_prc ← {}
5: maxH ← get the maximum height of a cluster
6: for h = 0 to h < maxH do
7: D ← cut dendrogram at h distance and get

distances between children of obtained clusters
8: add (variance of D)/sigma_total to sigma_prc
9: i ← 0

10: maxD ← 0
11: maxDIndex ← 0
12: while ++i < cardinality of sigma_prc - 2 do
13: slopeA ← 1 / (sigma_prc__i+1 - sigma_prc__i)
14: slopeB ← 1 / (sigma_prc__i+2 - sigma_prc__i+1)
15: d ← slopeA - slopeB
16: if d > maxD then
17: maxD = d
18: maxDIndex = i+1
19: return maxDIndex

patterns and relative closeness [28], or on information
criterion approaches - such as Akaike information crite-
rion [29], Bayesian information criterion [30], or Deviance
information criterion [30]. Note that no method performs
always well; particularly, the Elbowmethod does not work
well if the data are not very clustered. The GeMSE user
can always interactively define the number of clusters to
consider.

Statistical inference
Samples (columns) or regions (rows) of a genometric
space can represent results of different hypothesis testing

(e.g., DNA-protein binding significance); hence, GeMSE
implements commonly used statistical inference methods
to test (null and alternative) hypothesis, deduce proper-
ties, and evaluate correlation and dependencies between
samples or regions. The methods for statistical infer-
ence implemented in GeMSE follow in the following two
classes:

• Statistical hypothesis testing: GeMSE allows the
hypothesis testing based on the following statistics
computed for a genometric space: t-statistic,
one-sample and two-tailed t-test, two-sided t-test.
GeMSE also evaluates if the null hypothesis can be
rejected accordint to a given α confidence, p-value,
approximated degree of freedom, and
homoscedasticity.

• Covariance and correlation: To spot correlation and
dependencies, GeMSE allows performing covariance,
Pearson product-moment correlation coefficient, and
principle component analysis among genometric
space row or columns.

GeMSE allows users to interactively choose a genomet-
ric space and an analysis to be performed, and to setup
the required parameters; then, it visualizes data as sin-
gle values (e.g., p-values) or plots, using scatter plots or
heatmaps.

Results
We demonstrate the effective application and practical
usefulness of GeMSE using 33 NGS Chromatin Immuno-
precipitation sequencing (ChIP-seq) datasets from the
Homo sapiens A549 immortalized cell line (an epithe-
lial cell line derived from lung carcinoma tissue) [31],
downloaded from ENCODE [3].

CBA

Fig. 5 Patterns exploration options: A heatmap, where each row represents a pattern and is labeled by the name of one of the elements of the
pattern, and each column shows the counts of each of the patterns. B radial graph, where each node represents a vector (pattern analysis input),
and edges are the relations between the nodes. Nodes colored red, are the nodes above the dendrogram cut, and nodes colored purple are below
dendrogram cut; hence all the nodes colored purple after a red node, belong to the same pattern. C Force-directed graph, where nodes belonging
to the same pattern are aggregated



Jalili et al. BMC Bioinformatics  (2017) 18:536 Page 9 of 15

Datasets
The datasets used are summarized on Table 1; they
cover various types of experiments, spanning different
treatments and targeting various DNA-binding proteins.

• Some datasets belong to studies assessing the effect of
treatments with Dexamethasone (Dex) on the
DNA-binding enrichment profile of different
proteins, including the treatments (a) with various
doses of Dex (500 pM, 5 nM, and 50 nM) on NR3C1,

Table 1 Datasets of human A549 immortalized cell line used for
GeMSE demonstration

# Treatment Dose Duration Antibody
target

Replicates

1 Dexamethasone 500 pM 1 h NR3C1 ••
2 Dexamethasone 5 nM 1 h NR3C1 ••
3 Dexamethasone 50 nM 1 h NR3C1 ••
4 Dexamethasone 100 nM 30m JUNB ••
5 Dexamethasone 100 nM 0 h JUNB ••
6 Dexamethasone 100 nM 1 h JUNB ••
7 Dexamethasone 100 nM 2 h JUNB ••
8 Dexamethasone 100 nM 3 h JUNB • • •
9 Dexamethasone 100 nM 4 h JUNB • • •
10 Dexamethasone 100 nM 5 h JUNB • • •
11 Dexamethasone 100 nM 7 h JUNB • • •
12 Dexamethasone 100 nM 8 h JUNB • • •
13 Dexamethasone 100 nM 10 h JUNB ••
14 Dexamethasone 100 nM 1 h FOXA1 ••
15 Dexamethasone 100 nM 1 h POLR2A ••
16 Dexamethasone 100 nM 1 h USF1 ••
17 Ethanol 0.02% 1 h ATF3 • • •
18 Ethanol 0.02% 1 h BCL3 ••
19 Ethanol 0.02% 1 h CTCF ••
20 Ethanol 0.02% 1 h EP300 ••
21 Ethanol 0.02% 1 h GABPA ••
22 Ethanol 0.02% 1 h JUND ••
23 Ethanol 0.02% 1 h POLR2A ••
24 Ethanol 0.02% 1 h REST ••
25 Ethanol 0.02% 1 h SIN3A ••
26 Ethanol 0.02% 1 h SIX5 ••
27 Ethanol 0.02% 1 h TAF1 ••
28 Ethanol 0.02% 1 h TCF12 ••
29 Ethanol 0.02% 1 h USF1 ••
30 None None None CTCF ••
31 None None None PBX3 ••
32 None None None RAD21 ••
33 None None None TEAD4 ••

a glucocorticoid receptor protein (see rows 1-3 on
Tables 1 and 2), or (b) with 100 nM of Dex on
transcription factor jun-B for multiple durations
(30m, 0 h, 1 h, 2 h, 3 h, 4 h, 5 h, 7 h, 8 h, and 10 h; see
rows 4-13 on Tables1 and 2), or (c) with 100 nM of
Dex for 1 h on different transcription factors (FOXA1,
POLR2A, USF1; see rows 14-16 on Tables 1 and 2).

• Some other datasets belong to studies assessing the
effect of 1 h treatment with 0.02% of Ethanol (EtOH)
on different DNA-binding proteins (e.g., ATF-3,
CTCF, jun-D; see rows 17-29 on Tables 1 and 2), or
to studies assessing the activity of DNA-binding
proteins under no treatment (see rows 30-33 on
Tables 1 and 2).

Data preparation
Each dataset consists of 2-3 (isogenous) replicates.
The replicates were comparatively evaluated using the
Multiple Sample Peak Calling (MSPC) method [32],
which locally lowers the minimum significance required
to accept repeated evidences across replicates. We
used MuSERA [33], a graphical implementation of
the MSPC method, to combine multiple replicates of
DNA-binding enriched region (i.e., called peak) sam-
ples of a dataset into a single sample without loosing
or overestimating the significance of the called peak
regions.
Each of the considered datasets has a target protein

(summarized on Table 2). As the function of proteins
tends to be regulated by other proteins (cf. interac-
tomics), we used STRING [34] to search for protein-
protein interactions for each of the dataset target pro-
teins. We found 163 proteins that interact with at
least one of the dataset target proteins (see Fig. 6).
We focused on these 182 proteins (i.e., 19 target pro-
teins, and 163 proteins with which the target proteins
interact).
As reference genomic regions, we used RefSeq [35]

human gene annotations downloaded from Ensembl [36],
focusing on those genes regarding the selected proteins
based on gene name; we found 171 of them.
In GeMSE we loaded a reference sample with the con-

sidered genes, and the 33 replicate-combined ChIP-seq
experiment samples obtained; thus, we mapped every
DNA-protein binding enriched region in each of the lat-
ter samples on the considered genes (see flowchart and
panel b on Fig. 1), and computed aggregate values of the
attributes associated with the regions in each ChIP-seq
sample that overlap each gene (i.e., region counts, aver-
ages of region p-values). In so doing, we built a genometric
space R with 171 rows (genes) and 33 columns (sam-
ples/conditions) (see panel R on Fig. 7), which we fully
explored and interactively analyzed by taking advantage of
GeMSE.
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Table 2 Target proteins of the used datasets regarding treatments with Dexamethasone (Dex), or Ethanol (EtOH), or with no treatment
(None)

# Target protein Antibody target Associated disease (main) Dex EtOH None

1 Activating Transcription Factor 3 ATF3 Hodgkin’s lymphoma [38] �
2 B-cell lymphoma 3 BCL3 Lymphoma and chronic lymphocytic leukemia [39] �
3 Transcriptional repressor CTCF CTCF Regulation of chromatin architecture [40] � �
4 E1A binding protein p300 EP300 Rubinstein-Taybi syndrome [41] �
5 Forkhead box protein A1 FOXA1 Estrogen receptor α (ERα) breast cancer [42] �
6 GA-binding protein alpha chain GABPA Down syndrome [43] �
7 Transcription factor jun-B JUNB Myeloproliferative disorder [44] �
8 Transcription factor jun-D JUND Adult-T cell leukaemia [45] �
9 Glucocorticoid receptor NR3C1 Glucocorticoid resistance syndrome [46] �
10 Pre-B-cell leukemia transcription factor 3 PBX3 Pilocytic astrocytoma [47] �
11 DNA-directed RNA polymerase II subunit RPB1 POLR2A UV-sensitive syndrome [48] � �
12 Double-strand-break repair protein rad21 homolog RAD21 Cornelia de Lange syndrome [49] �
13 RE1-silencing transcription factor REST Wilms tumor [50] �
14 Paired amphipathic helix protein Sin3a SIN3A Chromosome 15q24 microdeletion syndrome [51] �
15 Homeobox protein SIX5 SIX5 Branchio-oto-renal syndrome [52] �
16 Transcription initiation factor TFIID subunit 1 TAF1 X-linked dystonia-parkinsonism [53] �
17 Transcription factor 12 TCF12 Extraskeletal myxoid chondrosarcoma [54] �
18 Transcriptional enhancer factor TEF-3 TEAD4 Narcolepsy [55] �
19 Upstream stimulatory factor 1 USF1 Hyperlipidemia [56] � �

Fig. 6 Protein-protein interaction. The labeled proteins are the
considered target proteins summarized on Table 2, and the unlabeled
proteins are the proteins that interact with at least one of the target
proteins

Data exploration
As an example, in our scenario GeMSE can be used
to search for experiment samples with similar profiles
of gene-protein binding enrichment significance. GeMSE
can extract patterns of such profiles in the considered
genometric space, leveraging on the following data trans-
formation:

R′ = Cluster (C,AVERAGE,EU) R

In our case, GeMSE suggests the existence of 5 of such
patterns (see panel Rpc on Fig. 7), and supports their
explanation based on the metadata of samples sharing
the same pattern (see Table 3). Referring to Table 3, all
10 jun-B samples with Dex 100 nM treatment for vari-
ous durations are grouped together in pattern P-1, as well
as both samples targeting POLR2A are in pattern P-2.
These are interesting, yet expected, results that GeMSE
highlights; answers to several other questions can be dis-
covered through GeMSE. In the following subsections, we
show how to discover more interesting aspects of the data
by interactively exploring them taking advantage of the
easy-to-use graphical interface for interactive analytics of
GeMSE.
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Fig. 7 Exploring the effect of treatment with Ethanol 0.02% on gene-binding enrichment of several proteins. Heatmaps are displayed in thumbnail
size (since at this resolution the labels of rows and columns would not be readable, we removed them and provide full size labeled heatmaps at
http://www.bioinformatics.deib.polimi.it/GeMSE/). The heatmaps in yellow-blue and black-red color scale represent the genometric spaces
generated in the GeMSE STT during the exploration, and the extracted patterns, respectively, for the binding enrichment significance. Panel Rpc
shows the patterns of gene-protein binding enrichment significance found for the samples/treatments-proteins in the initial genometric space R.
Panels A2p0, A2p1, and A2p2 plot the vectors (genes) respectively forming the first, second, and third most common patterns of those found
(shown on panel A2p) for the genometric space A2. The table explains the vectors (samples) forming the most common pattern on panel A5pc in
terms of the“Antibody target” attribute of the sample metadata. Panels A5pr0, A5pr1, A5pr2, and A2pr3 plot the vectors (genes) orderly forming the
first four most common patterns of those found (shown on panel A5pr) for the genometric space A5

Effects of Ethanol treatment
In this subsection, we show howGeMSE can help in deter-
mining the effects of ethanol treatment on gene-protein
binding enrichment profiles.
A number of considered input samples regard study-

ing the effect of the treatment with Ethanol 0.02% on the
DNA-binding enrichment profile of various proteins. To
focus on these samples, in GeMSE we first sort data as
follows (see panel A1 on Fig. 7):

A1 = Sort (C,ASCENDING,Treatment) R

By setting column labels of the heatmap to “Treatment”,
and looking at the heatmap or at the grid view (a tab-
ular representation of a genometric space in GeMSE) of
the result, we see that obtained columns 16-28 represent
samples with EtOH 0.02% treatment; we extract these
columns as follows (see panel A2 on Fig. 7):

A2 = Extract ([16, 29), [0, 171)) A1

Then, we search for patterns of gene-protein binding
enrichment significance only on the extracted samples

http://www.bioinformatics.deib.polimi.it/GeMSE/
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Table 3 Excerpt of metadata aggregation for the five patterns of
gene-protein binding enrichment significance that correspond
to the root of the STT of the performed data exploration
described in Fig. 7 (see panel Rpc on Fig. 7)

Attribute Value P-0 P-1 P-2 P-3 P-4

Antibody target POLR2A 0 0 2 0 0

Treatment Dex 100 nM 30m 0 1 0 0 0

Treatment Dex 100 nM 0 h 0 1 0 0 0

Treatment Dex 100 nM 1 h 0 1 0 0 0

Treatment Dex 100 nM 2 h 0 1 0 0 0

Treatment Dex 100 nM 3 h 0 1 0 0 0

Treatment Dex 100 nM 4 h 0 1 0 0 0

Treatment Dex 100 nM 5 h 0 1 0 0 0

Treatment Dex 100 nM 7 h 0 1 0 0 0

Treatment Dex 100 nM 8 h 0 1 0 0 0

Treatment Dex 100 nM 10 h 0 1 0 0 0

with EtOH 0.02% treatment; this can be done by clus-
tering the obtained genometric space A2 by rows/genes
(instead of by columns/samples, as in the initial example).
Leveraging on the following data transformation:

A2′ = Cluster (R,AVERAGE,EU) A2

GeMSE suggests 21 patterns (see Fig. 8 for Elbow
method data), each representing a group of genes with
similar profiles of gene-protein binding enrichment signif-
icance for the extracted EtOH 0.02% treatment samples
(see panel A2p on Fig. 7).
GeMSE allows further exploration of each of the

extracted patterns, by expanding a pattern to the individ-
ual elements it groups (in this case, genes) and visualiz-
ing on a heatmap the values of the element associated
attribute considered (in this case, binding enrichment sig-
nificance p-value for each of the grouped genes and each
evaluated sample). For instance, the three upper most

Fig. 8 Application of the Elbow method for finding the optimal
number of clusters on A2 genometric space of Fig. 7. Based on this
method, the optimal number of clusters is 21

patterns in panel A2p on Fig. 7 are expanded to the con-
tributing genes and plotted on panels A2p0, A2p1, and
A2p2 on Fig. 7. A pattern can also be described by using
the metadata of the elements it groups; e.g., the left most
pattern in panel A5pc on Fig. 7 is described in the table on
Fig. 7 using sample metadata. Additionally, GeMSE allows
using any of the numerical attributes associated with the
pattern elements (e.g., in our case, p-value, q-value, region
count) for visualization of the individual components of
a pattern. This allows assessing patterns based on various
quantifying attributes.
Popularity of a pattern within a dataset (i.e., number of

dataset elements sharing the pattern) can also be easily
observed. Combining such observation with the intensity
of the attribute values associated with the pattern ele-
ments can provide useful support for further evaluations.
For example, the uppermost pattern in panel A2p on Fig. 7
is very common (117 out of 171 genes share it; see panel
A2p0 on Fig. 7). Yet, it is formed by genes with no or
weak protein binding enrichment across all samples; thus,
we may not be interested in such pattern. We may also
exclude the genes with low or no protein binding enrich-
ment on all samples; such gene filtering can be done as
follows.
We can first sort the rows/genes of the genomet-

ric space in ascending order (instead of sorting by
columns/samples, as previously done) as follows (see
panel A3 on Fig. 7):

A3 = Sort (R,ASCENDING, p-value) A2

Then, using a grid view we look at the sorted genomet-
ric space A3 and identify the row r (with r = 72, in our
case) as the first row/gene with protein binding enrich-
ment in at least one of the samples (i.e., all the genes at
rows before r have protein binding enrichment in neither
of the samples, and all the genes on and after r have pro-
tein binding enrichment at least in one of the samples).
Then, we extract rows from r to the last row of the ordered
genometric space A3 as follows (see panel A4 on Fig. 7):

A4 = Extract ([0, 13), [72, 171)) A3

Even after removing genes with no protein binding
enrichment, some of the remaining genes may have a low
significant protein binding enrichment, while some oth-
ers may be highly significantly enriched. It may then be
useful to discretize gene-protein binding enrichment sig-
nificance as weak, middle, or strong. Given the nature of
significance p-values, it may be worth grouping together
data with p-values 1 · e−12 (significant) and 1 · e−200

(very significant), rather than grouping data with p-values
1·e−12 (significant) and 1·e−4 (low significant), as it would
probably occur by p-value clustering. This is obtained by
the Discretize transformation, applied on A4 as it fol-
lows, where the p-values 40 and 80 are in−10·log10 format
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as in the A4 data (see panel A5 on Fig. 7):

A5=Discretize ([0, 13), [0, 99), [40, 0, 1] , [80, 1, 2] ) A4

On the discretized genometric space A5, we can search
for genes with similar pattern of protein binding enrich-
ment significance, and find the patterns in panel A5pr on
Fig. 7. We note that:

1. The most common pattern found (see panel A5pr0
on Fig. 7) includes genes with significant protein
binding enrichment in samples targeting CTCF or
REST proteins (row number 19 and 23 on Table 1).

2. The second most common pattern (see panel A5pr1
on Fig. 7) includes genes that have mostly significant
enrichment of POLR2A binding (sample in row
number 24 on Table 1).

3. The third most common pattern (see panel A5pr2 on
Fig. 7) includes genes with significant protein binding
enrichment in most of the samples.

4. The forth most common pattern (see panel A5pr3 on
Fig. 7) includes the set of genes with mostly
significant enrichment of USF1 binding (sample in
row 29 on Table 1).

Then, on the discretized genometric space A5, we can
also search for samples with similar pattern of protein
binding enrichment significance. Based on the GeMSE
suggested number of clusters, we find 5 patterns (see panel
A5pc on Fig. 7), with one of them in common among 8
out of 13 samples with EtOH 0.02% treatment. We use
GeMSE to explore this pattern, and choose to see the
values of the “Antibody target” metadata attribute of the
samples with this pattern; this operation lists all the target
proteins of such samples (see the table on Fig. 7), which
include proteins SIN3A and REST. This finding might
have several interpretations; for instance, an explanation
could be that the REST transcription factor is known
to repress transcription by recruiting the corepressor
SIN3A [37].

Effects of Dexamethasone
Here, we show how various doses of Dexamethasone
treatment affect gene-binding enrichment of the NR3C1
protein, by using GeMSE on the considered data. Solving
this problem requires a data exploration procedure differ-
ent from the previously performed one, starting from the
genometric space A1 obtained after the sort by treatment
operation at the beginning of the previously described
data exploration, and ready available in the GeMSE STT
(see Fig. 3). As our considered data include three sam-
ples targeting the NR3C1 protein and regarding Dexam-
ethasone treatment with 500 pM, 5 nM and 50 nM dose,
respectively, first we want to extract their corresponding
columns from A1. After looking at the A1 heatmap and
identifying the required columns as columns 13-15 in A1,
we extract them as follows:

B1 = Extract ([13, 16), [0, 171)) A1

Then, we remove genes without protein binding enrich-
ment as done in previous exploration, i.e., through gene
sorting by enrichment p-value, visual inspection of the
heatmap of the sorted genometric space B2 obtained,
identification of the row r in B2 corresponding to the first
gene with NR3C1 binding enrichment in at least one of
the samples (i.e., r = 130, in our case), and extraction of
the rows from r to the last row of the ordered genometric
space B2 (see panel B3 on Fig. 9).
Then, we search for patterns of gene-binding enrich-

ment significance across the three samples. GeMSE
suggests 2 patterns of enrichment significance for the
gene-binding of the NR3C1 protein (see panel B3pc on
Fig. 9), where the binding enrichment significance for the
treatment with 50 nM of Dex are in a separate group from
the significance regarding the treatments with lower doses
of Dex, i.e., 5 nM and 500 pM. This can be seen also from
the metadata aggregation table that GeMSE provides (see
an excerpt of it in the table on Fig. 9).

Conclusions
The availability of huge, well-curated and open reposito-
ries of processed genomic datasets motivates our efforts

Fig. 9 Exploring the effect of treatment with various doses of Dexamethasone on the enrichment of the gene-binding of the NR3C1 protein. From
the initial panel B1, three columns corresponding to samples regarding treatments with different Dexamethasone doses (500 pM, 5 nM and 50 nM)
are extracted, and from them genes without binding enrichment are removed (panel B3); finally, patterns of gene-binding enrichment significance
are extracted in panel B3pc. Metadata aggregations of the two identified patterns are shown in the table. Heatmaps at full size and with their
row/column labels are available at http://www.bioinformatics.deib.polimi.it/GeMSE/

http://www.bioinformatics.deib.polimi.it/GeMSE/
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in designing and implementing new data exploration
abstractions, so as to facilitate effective biological knowl-
edge discovery through interactive analytics.
Thanks to the notion of genometric space, our GeMSE

tool at the same time rises the expressive power of user-
data interaction and lowers the complexity of data explo-
ration, making it available to nonprogrammers. The tool
supports a trial-and-error approach that can be very use-
ful for both defining the appropriate knowledge extraction
pipelines and exploring alternative hypotheses, making
GeMSE a relevant interactive analytics application.
GeMSE effectively provides the tracing of data explo-

ration steps through a state-transition diagram, whose
states, which represent exploration step results, are all
accessible at any time; this is obtained thanks to an effi-
cient algorithm for state-transition caching and recon-
struction implemented in the tool. Evolution of the data
exploration occurs by means of state transitions which
embody genometric space transformations.
GeMSE effective application and practical usefulness is

demonstrated through significant use cases of biological
interest.

Availability and requirements
Project name: GeMSE
Project homepage: http://www.bioinformatics.deib.
polimi.it/GeMSE/
Project source code and discussions and issues page:
https://github.com/Genometric/GeMSE
License: GPL v3.0
Operating system(s): platform independent (tested on
Microsoft Windows 10, macOS Sierra, and Ubuntu 16).
Programming language: Java
Other requirements: if chosen to connect with R,
GeMSE requires R installation with gplots, ape, and hclust
packages installed.
Tutorial and example data: available at project home-
page.
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