63 research outputs found

    High-efficiency gene transfer into nontransformed cells: utility for studying gene regulation and analysis of potential therapeutic targets

    Get PDF
    The elucidation of the signalling pathways involved in inflammatory diseases, such as rheumatoid arthritis, could provide long sought after targets for therapeutic intervention. Gene regulation is complex and varies depending on the cell type, as well as the signal eliciting gene activation. However, cells from certain lineages, such as macrophages, are specialised to degrade exogenous material and consequently do not easily transfect. Methods for high-efficiency gene transfer into primary cells of various lineages and disease states are desirable, as they remove the uncertainties associated with using transformed cell lines. Significant research has been undertaken into the development of nonviral and viral vectors for basic research, and as vehicles for gene therapy. We briefly review the current methods of gene delivery and the difficulties associated with each system. Adenoviruses have been used extensively to examine the role of various cytokines and signal transduction molecules in the pathogenesis of rheumatoid arthritis. This review will focus on the involvement of different signalling molecules in the production of tumour necrosis factor alpha by macrophages and in rheumatoid synovium. While the NF-kappaB pathway has proven to be a major mediator of tumour necrosis factor alpha production, it is not exclusive and work evaluating the involvement of other pathways is ongoing

    Bruton's Tyrosine Kinase Is Required For Lipopolysaccharide-induced Tumor Necrosis Factor Ξ± Production

    Get PDF
    Lipopolysaccharide (LPS), a product of Gram-negative bacteria, is potent mediator of tumor necrosis factor (TNF)Ξ± production by myeloid/macrophage cells. Inhibitors capable of blocking the signaling events that result in TNFΞ± production could provide useful therapeutics for treating septic shock and other inflammatory diseases. Broad spectrum tyrosine inhibitors are known to inhibit TNFΞ± production, however, no particular family of tyrosine kinases has been shown to be essential for this process. Here we show that the Bruton's tyrosine kinase (Btk)-deficient mononuclear cells from X-linked agammaglobulinemia patients have impaired LPS-induced TNFΞ± production and that LPS rapidly induces Btk kinase activity in normal monocytes. In addition, adenoviral overexpression of Btk in normal human monocytes enhanced TNFΞ± production. We examined the role of Btk in TNFΞ± production using luciferase reporter adenoviral constructs and have established that overexpression of Btk results in the stabilization of TNFΞ± mRNA via the 3β€² untranslated region. Stimulation with LPS also induced the activation of related tyrosine kinase, Tec, suggesting that the Tec family kinases are important components for LPS-induced TNFΞ± production. This study provides the first clear evidence that tyrosine kinases of the Tec family, in particular Btk, are key elements of LPS-induced TNFΞ± production and consequently may provide valuable therapeutic targets for intervention in inflammatory conditions

    Bruton's tyrosine kinase regulates TLR7/8-induced TNF transcription via nuclear factor-ΞΊB recruitment

    Get PDF
    Tumour necrosis factor (TNF) is produced by primary human macrophages in response to stimulation by exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) via Toll-like receptor (TLR) signalling. However, uncontrolled TNF production can be deleterious and hence it is tightly controlled at multiple stages. We have previously shown that Bruton's tyrosine kinase (Btk) regulates TLR4-induced TNF production via p38 MAP Kinase by stabilising TNF messenger RNA. Using both gene over-expression and siRNA-mediated knockdown we have examined the role of Btk in TLR7/8 mediated TNF production. Our data shows that Btk acts in the TLR7/8 pathway and mediates Ser-536 phosphorylation of p65 RelA and subsequent nuclear entry in primary human macrophages. These data show an important role for Btk in TLR7/8 mediated TNF production and reveal distinct differences for Btk in TLR4 versus TLR7/8 signalling

    Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to G(ALERT)

    Get PDF
    A major discovery of recent decades has been the existence of stem cells and their potential to repair many, if not most, tissues. With the aging population, many attempts have been made to use exogenous stem cells to promote tissue repair, so far with limited success. An alternative approach, which may be more effective and far less costly, is to promote tissue regeneration by targeting endogenous stem cells. However, ways of enhancing endogenous stem cell function remain poorly defined. Injury leads to the release of danger signals which are known to modulate the immune response, but their role in stem cell-mediated repair in vivo remains to be clarified. Here we show that high mobility group box 1 (HMGB1) is released following fracture in both humans and mice, forms a heterocomplex with CXCL12, and acts via CXCR4 to accelerate skeletal, hematopoietic, and muscle regeneration in vivo. Pretreatment with HMGB1 2 wk before injury also accelerated tissue regeneration, indicating an acquired proregenerative signature. HMGB1 led to sustained increase in cell cycling in vivo, and using Hmgb1 -/- mice we identified the underlying mechanism as the transition of multiple quiescent stem cells from G0 to GAlert HMGB1 also transitions human stem and progenitor cells to GAlert Therefore, exogenous HMGB1 may benefit patients in many clinical scenarios, including trauma, chemotherapy, and elective surgery

    Low-dose TNF augments fracture healing in normal and osteoporotic bone by up-regulating the innate immune response

    Get PDF
    The mechanism by which trauma initiates healing remains unclear. Precise understanding of these events may define interventions for accelerating healing that could be translated to the clinical arena. We previously reported that addition of low-dose recombinant human TNF (rhTNF) at the fracture site augmented fracture repair in a murine tibial fracture model. Here, we show that local rhTNF treatment is only effective when administered within 24h of injury, when neutrophils are the major inflammatory cell infiltrate. Systemic administration of anti-TNF impaired fracture healing. Addition of rhTNF enhanced neutrophil recruitment and promoted recruitment of monocytes through CCL2 production. Conversely, depletion of neutrophils or inhibition of the chemokine receptor CCR2 resulted in significantly impaired fracture healing. Fragility, or osteoporotic, fractures represent a major medical problem as they are associated with permanent disability and premature death. Using a murine model of fragility fractures, we found that local rhTNF treatment improved fracture healing during the early phase of repair. If translated clinically, this promotion of fracture healing would reduce the morbidity and mortality associated with delayed patient mobilization

    IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages

    Get PDF
    IL-10 plays a central nonredundant role in limiting inflammation in vivo. However, the mechanisms involved remain to be resolved. Using primary human macrophages, we found that IL-10 inhibits selected inflammatory genes, primarily at a level of transcription. At the TNF gene, this occurs not through an inhibition of RNA polymerase II (Pol II) recruitment and transcription initiation but through a mechanism targeting the stimulation of transcription elongation by cyclin-dependent kinase (CDK) 9. We demonstrated an unanticipated requirement for a region downstream of the TNF 3β€² untranslated region (UTR) that contains the nuclear factor ΞΊB (NF-ΞΊB) binding motif (ΞΊB4) both for induction of transcription by lipopolysaccharide (LPS) and its inhibition by IL-10. IL-10 not only inhibits the recruitment of RelA to regions containing ΞΊB sites at the TNF gene but also to those found at other LPS-induced genes. We show that although IL-10 elicits a general block in RelA recruitment to its genomic targets, the gene-specific nature of IL-10’s actions are defined through the differential recruitment of CDK9 and the control of transcription elongation. At TNF, but not NFKBIA, the consequence of RelA recruitment inhibition is a loss of CDK9 recruitment, preventing the stimulation of transcription elongation

    Health-related quality-of-life outcomes of very preterm or very low birth weight adults : evidence from an individual participant data meta-analysis

    Get PDF
    Background and Objective Assessment of health-related quality of life for individuals born very preterm and/or low birthweight (VP/VLBW) offers valuable complementary information alongside biomedical assessments. However, the impact of VP/VLBW status on health-related quality of life in adulthood is inconclusive. The objective of this study was to examine associations between VP/VLBW status and preference-based health-related quality-of-life outcomes in early adulthood. Methods Individual participant data were obtained from five prospective cohorts of individuals born VP/VLBW and controls contributing to the β€˜Research on European Children and Adults Born Preterm’ Consortium. The combined dataset included over 2100 adult VP/VLBW survivors with an age range of 18–29 years. The main exposure was defined as birth before 32 weeks’ gestation (VP) and/or birth weight below 1500 g (VLBW). Outcome measures included multi-attribute utility scores generated by the Health Utilities Index Mark 3 and the Short Form 6D. Data were analysed using generalised linear mixed models in a one-step approach using fixed-effects and random-effects models. Results VP/VLBW status was associated with a significant difference in the Health Utilities Index Mark 3 multi-attribute utility score of βˆ’β€‰0.06 (95% confidence interval βˆ’β€‰0.08, βˆ’β€‰0.04) in comparison to birth at term or at normal birthweight; this was not replicated for the Short Form 6D. Impacted functional domains included vision, ambulation, dexterity and cognition. VP/VLBW status was not associated with poorer emotional or social functioning, or increased pain. Conclusions VP/VLBW status is associated with lower overall health-related quality of life in early adulthood, particularly in terms of physical and cognitive functioning. Further studies that estimate the effects of VP/VLBW status on health-related quality-of-life outcomes in mid and late adulthood are needed

    Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation

    Get PDF
    A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair
    • …
    corecore