633 research outputs found

    EcoBot-II: An artificial agent with a natural metabolism

    Get PDF
    In this paper we report the development of the robot EcoBot-II, which exhibits a primitive form of artificial symbiosis. Microbial Fuel Cells (MFCs) were used as the onboard energy supply, which consisted of bacterial cultures from sewage sludge and employed oxygen from free air for oxidation at the cathode. EcoBot-II was able to perform sensing, information processing, communication and actuation when fed (amongst other substrates) with flies. This is the first robot in the world, to utilise unrefined substrate, oxygen from free air and exhibit four different types of behaviour

    Efficient simulations with electronic open boundaries

    Get PDF
    We present a reformulation of the Hairy Probe method for introducing electronic open boundaries that is appropriate for steady state calculations involving non-orthogonal atomic basis sets. As a check on the correctness of the method we investigate a perfect atomic wire of Cu atoms, and a perfect non-orthogonal chain of H atoms. For both atom chains we find that the conductance has a value of exactly one quantum unit, and that this is rather insensitive to the strength of coupling of the probes to the system, provided values of the coupling are of the same order as the mean inter-level spacing of the system without probes. For the Cu atom chain we find in addition that away from the regions with probes attached, the potential in the wire is uniform, while within them it follows a predicted exponential variation with position. We then apply the method to an initial investigation of the suitability of graphene as a contact material for molecular electronics. We perform calculations on a carbon nanoribbon to determine the correct coupling strength of the probes to the graphene, and obtain a conductance of about two quantum units corresponding to two bands crossing the Fermi surface. We then compute the current through a benzene molecule attached to two graphene contacts and find only a very weak current because of the disruption of the π-conjugation by the covalent bond between the benzene and the graphene. In all cases we find that very strong or weak probe couplings suppress the current

    Validity and practical utility of accelerometry for the measurement of in-hand physical activity in horses

    Get PDF
    Background: Accelerometers are valid, practical and reliable tools for the measurement of habitual physical activity (PA). Quantification of PA in horses is desirable for use in research and clinical settings. The objective of this study was to evaluate a triaxial accelerometer for objective measurement of PA in the horse by assessment of their practical utility and validity. Horses were recruited to establish both the optimal site of accelerometer attachment and questionnaire designed to explore owner acceptance. Validity and cut-off values were obtained by assessing PA at various gaits. Validation study- 20 horses wore the accelerometer while being filmed for 10 min each of rest, walking and trotting and 5 mins of canter work. Practical utility study- five horses wore accelerometers on polls and withers for 18 h; compliance and relative data losses were quantified. Results: Accelerometry output differed significantly between the four PA levels (P <0•001) for both wither and poll placement. For withers placement, ROC analyses found optimal sensitivity and specificity at a cut-off of <47 counts per minute (cpm) for rest (sensitivity 99.5 %, specificity 100 %), 967–2424 cpm for trotting (sensitivity 96.7 %, specificity 100 %) and ≥2425 cpm for cantering (sensitivity 96.0 %, specificity 97.0 %). Attachment at the poll resulted in optimal sensitivity and specificity at a cut-off of <707 counts per minute (cpm) for rest (sensitivity 97.5 %, specificity 99.6 %), 1546–2609 cpm for trotting (sensitivity 90.33 %, specificity 79.25 %) and ≥2610 cpm for cantering (sensitivity 100 %, specificity 100 %) In terms of practical utility, accelerometry was well tolerated and owner acceptance high. Conclusion: Accelerometry data correlated well with varying levels of in-hand equine activity. The use of accelerometers is a valid method for objective measurement of controlled PA in the horse

    Rapid offline isotopic characterisation of hydrocarbon gases generated by micro scale sealed vessel pyrolysis

    Get PDF
    The method of offline coupling of micro scale sealed vessel pyrolysis (MSSV-Py) and gas chromatography-isotopic ratio mass spectrometry (GC-IRMS) was developed using a purpose built gas sampling device. The sampling device allows multiple GC and GC-IRMS injections to quantify the molecular composition and isotopic evolution of hydrocarbon gases (n-C1 to n-C5) generated by artificial maturation of sedimentary organic matter. Individual MSSV tubes were introduced into the gas sampling device, which was then evacuated to remove air and filled with helium at atmospheric pressure. The tube was crushed using a plunger after which the device was heated at 120 °C for 1 min to thermally mobilize and equilibrate the generated gas products. Aliquots of the gas phase were sampled using a gas tight syringe and analysed via GC-FID and GC-IRMS. Hydrocarbon gas yields using this technique have been calculated and compared with those obtained previously by online MSSV pyrolysis of the same samples under the same conditions. The major objective of this study was to investigate the potential isotopic fractionation of generated gaseous hydrocarbons within the gas sampling device as a function of time and temperature. For this purpose several tests using a standard gas mixture have been performed on the GC-IRMS. The analyses showed no isotopic fractionation of C1–5 hydrocarbons within 1 hour, minor δ13C enrichment after 5 hours, and significant enrichment after 22 hours for all the compounds at a temperature of 120 °C

    Role of electron localisation in H adsorption and hydride formation in the Mg basal plane under aqueous corrosion: a first-principles study

    Get PDF
    Understanding hydrogen-metal interactions is important in various fields of surface science, including the aqueous corrosion of metals. The interaction between atomic H and a Mg surface is a key process for the formation of sub-surface Mg hydride, which may play an important role in Mg aqueous corrosion. In the present work, we performed first-principles Density Functional Theory (DFT) calculations to study the mechanisms for hydrogen adsorption and crystalline Mg hydride formation under aqueous conditions. The Electron Localisation Function (ELF) is found to be a promising indicator for predicting stable H adsorption in the Mg surface. It is found that H adsorption and hydride layer formation is dominated by high ELF adsorption sites. Our calculations suggest that the on-surface adsorption of atomic H, OH radicals and atomic O could enhance the electron localisation at specific sites in the sub-surface region, thus forming effective H traps locally. This is predicted to result in the formation of a thermodynamically stable sub-surface hydride layer, which is a potential precursor of the crucial hydride corrosion product of magnesium

    Block bond-order potential as a convergent moments-based method

    Get PDF
    The theory of a novel bond-order potential, which is based on the block Lanczos algorithm, is presented within an orthogonal tight-binding representation. The block scheme handles automatically the very different character of sigma and pi bonds by introducing block elements, which produces rapid convergence of the energies and forces within insulators, semiconductors, metals, and molecules. The method gives the first convergent results for vacancies in semiconductors using a moments-based method with a low number of moments. Our use of the Lanczos basis simplifies the calculations of the band energy and forces, which allows the application of the method to the molecular dynamics simulations of large systems. As an illustration of this convergent O(N) method we apply the block bond-order potential to the large scale simulation of the deformation of a carbon nanotube.Comment: revtex, 43 pages, 11 figures, submitted to Phys. Rev.

    Dissipative equation of motion for electromagnetic radiation in quantum dynamics

    Get PDF
    The dynamical description of the radiative decay of an electronically excited state in realistic many-particle systems is an unresolved challenge. In the present investigation electromagnetic radiation of the charge density is approximated as the power dissipated by a classical dipole, to cast the emission in closed form as a unitary single-electron theory. This results in a formalism of unprecedented efficiency, critical for ab initio modeling, which exhibits at the same time remarkable properties: it quantitatively predicts decay rates, natural broadening, and absorption intensities. Exquisitely accurate excitation lifetimes are obtained from time-dependent DFT simulations for C2+, B+, and Be, of 0.565, 0.831, and 1.97 ns, respectively, in accord with experimental values of 0.57±0.02, 0.86±0.07, and 1.77–2.5 ns. Hence, the present development expands the frontiers of quantum dynamics, bringing within reach first-principles simulations of a wealth of photophysical phenomena, from fluorescence to time-resolved spectroscopies

    Fluorescence in quantum dynamics: accurate spectra require post-mean-field approaches

    Get PDF
    Real time modeling of fluorescence with vibronic resolution entails the representation of the light–matter interaction coupled to a quantum-mechanical description of the phonons and is therefore a challenging problem. In this work, taking advantage of the difference in timescales characterizing internal conversion and radiative relaxation—which allows us to decouple these two phenomena by sequentially modeling one after the other—we simulate the electron dynamics of fluorescence through a master equation derived from the Redfield formalism. Moreover, we explore the use of a recent semiclassical dissipative equation of motion [C. M. Bustamante et al., Phys. Rev. Lett. 126, 087401 (2021)], termed coherent electron electric-field dynamics (CEED), to describe the radiative stage. By comparing the results with those from the full quantum-electrodynamics treatment, we find that the semiclassical model does not reproduce the right amplitudes in the emission spectra when the radiative process involves the de-excitation to a manifold of closely lying states. We argue that this flaw is inherent to any mean-field approach and is the case with CEED. This effect is critical for the study of light–matter interaction, and this work is, to our knowledge, the first one to report this problem. We note that CEED reproduces the correct frequencies in agreement with quantum electrodynamics. This is a major asset of the semiclassical model, since the emission peak positions will be predicted correctly without any prior assumption about the nature of the molecular Hamiltonian. This is not so for the quantum electrodynamics approach, where access to the spectral information relies on knowledge of the Hamiltonian eigenvalues

    Efficient Recursion Method for Inverting Overlap Matrix

    Full text link
    A new O(N) algorithm based on a recursion method, in which the computational effort is proportional to the number of atoms N, is presented for calculating the inverse of an overlap matrix which is needed in electronic structure calculations with the the non-orthogonal localized basis set. This efficient inverting method can be incorporated in several O(N) methods for diagonalization of a generalized secular equation. By studying convergence properties of the 1-norm of an error matrix for diamond and fcc Al, this method is compared to three other O(N) methods (the divide method, Taylor expansion method, and Hotelling's method) with regard to computational accuracy and efficiency within the density functional theory. The test calculations show that the new method is about one-hundred times faster than the divide method in computational time to achieve the same convergence for both diamond and fcc Al, while the Taylor expansion method and Hotelling's method suffer from numerical instabilities in most cases.Comment: 17 pages and 4 figure
    • …
    corecore