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Real time modelling of fluorescence with vibronic resolution entails the representation of the light-matter interaction
coupled to a quantum-mechanical description of the phonons, and is therefore a challenging problem. In this work,
taking advantage of the difference in time-scales characterizing internal conversion and radiative relaxation—which
allows us to decouple these two phenomena by sequentially modelling one after the other—we simulate the electron
dynamics of fluorescence through a master equation derived from the Redfield formalism. Moreover, we explore the
use of a recent semiclassical dissipative equation of motion [Phys. Rev. Lett. 126, 087401 (2021)], termed CEED, to
describe the radiative stage. By comparing the results with those from the full quantum-electrodynamics treatment, we
find that the semiclassical model does not reproduce the right amplitudes in the emission spectra when the radiative
process involves the deexcitation to a manifold of closely lying states. We argue that this flaw is inherent to any mean-
field approach, and is the case with CEED. This effect is critical for the study of light-matter interaction and this work
is, to our knowledge, the first one to report this problem. We note that CEED reproduces the correct frequencies in
agreement with quantum electrodynamics. This is a major asset of the semiclassical model, since the emission peak
positions will be predicted correctly without any prior assumption about the nature of the molecular Hamiltonian. This
is not so for the quantum electrodynamics approach, where access to the spectral information relies on knowledge of
the Hamiltonian eigenvalues.

I. INTRODUCTION

The phenomenon of fluorescence is usually understood in
terms of the picture illustrated in Figure 1. In this picture we
differentiate three stages: i) excitation, ii) thermal relaxation
and iii) radiative decay. We note that the emission frequency
is lower than the absorption frequency, an effect known as the
Stokes shift1. Despite the simplicity of this picture, the last
two stages of this process are not trivial to describe theoret-
ically since they require a description of the molecular envi-
ronment, including all vibrational degrees of freedom and the
solvent, if present.
Thermal relaxation involves the interaction between the sys-
tem and a vibrational bath. A common strategy for simulating
this process is to use non-adiabatic excited-state dynamics. In
the literature there are many different approaches to this prob-
lem within an ab initio framework2,3. The most popular meth-
ods include semi-classical approaches such as Ehrenfest Dy-
namics and Surface Hopping, usually in a multiscale QM/MM
(Quantum Mechanics / Molecular Mechanics) framework to
describe the environment in a classical and computationally
less expensive way4,5. Despite advances in these methodolo-
gies, it is difficult to avoid their inherently high computational

cost. A full quantum dynamics representation (QD) is a more
accurate and natural framework to describe the evolution of
the vibrational bath6,7. Even though the computational cost
of this methodology increases exponentially with the number
of degrees of freedom, it is possible to reduce the complex-
ity by working with simple and parameterized models. These
kinds of models are frequently cheaper and sufficiently accu-
rate for conceptual studies. They also offer a more intuitive
and understandable way to study phenomena such as energy
transfer8, photoisomerization9,10, and fluorescence11. More-
over, these models allow conceptual studies in the framework
of time-resolved spectroscopy12.
The following stage in the relaxation process is the radiative
decay, and its description is also challenging. The most ac-
curate, but expensive, way to do this is by the use of quan-
tum electrodynamics (QED). Efforts to include this method-
ology in ab initio calculations led to the development of quan-
tum electrodynamics density functional theory (QEDFT)13,14,
and coupled-cluster electrodynamics15, however the compu-
tational cost is high. Semi-classical methods are a numer-
ically cheaper alternative; these include Ehrenfest dynam-
ics, Maxwell-Bloch equations, and optical Bloch equations,
to mention just a few16. One limitation of these method-
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FIG. 1. Fluorescence description using two one-dimensional poten-
tial energy surfaces. The process starts with the excitation of the
system (blue arrow), continues with thermal relaxation (red arrows)
and finishes with radiative decay (green arrow).

ologies is that they cannot model spontaneous emission of
phonons, though this was overcome by the development of
Ehrenfest+R17. A second limitation is that the transferabil-
ity of these methodologies is not always a simple task. As
a midpoint solution to this problem, we recently introduced
a semi-classical approach called CEED (Coherent Electron
Electric-field Dynamics), which, while it does not include
spontaneous emission, has proven versatile, low-cost and able
to offer a good description of radiative dissipation in ab ini-
tio electron dynamics. We note it has no adjustable parame-
ters and is adaptable to any level of theory18,19. Despite their
differences, all these semi-classical methodologies share the
same mean-field spirit, including some ab initio approaches
such as the Maxwell–Pauli–Kohn–Sham equations (MPKS)
obtained from QEDFT in the mean-field limit20.
In this work we present a general scheme based on CEED
to describe light emission in simple fluorescent models, eval-
uating the performance and limitations of our semi-classical
methodology. These fluorescent systems are described by
vibronic states which are propagated using QD. In order to
simulate the thermal relaxation we make use of the Redfield
formalism21 to describe a quantum bath of harmonic oscil-
lators. In section II we show results obtained in two simple
models using harmonic and anharmonic vibrational modes.
In section III we discuss the origin of key discrepancies with
the full QED description. We finish with section IV where
we present conclusions and perspectives for our approach that
also apply to other mean-field methodologies.

II. SIMULATING FLUORESCENCE

A. The harmonic case

The molecular model that we use for our first test is de-
picted in Figure 2. It is a two-level system (TLS), with a
ground state |g〉 and an excited state |e〉. The excited level is
coupled to a harmonic oscillator of angular frequency ν , pro-

FIG. 2. Two-level system represented as two harmonic surfaces.
Both oscillators have the same angular frequency (h̄ν) but different
minima shifted by an amount d.

ducing two shifted parabolic surfaces of equal stiffness, with
a spatial shift d. The corresponding Hamiltonian is

Ĥmol =
(

h̄ω + h̄νQ− h̄ν
√

Q
(
â† + â

))
|e〉〈e|+ h̄ν

(
â†â+

1
2

)
(1)

where h̄ω is the energy gap between the minima of the elec-
tronic energy surfaces, M is the mass of the oscillator, Q =
Mν

2h̄ d2, and â† and â are the creation and annihilation operators
of the harmonic oscillator. To include vibrational relaxation
we couple the vibrational modes of our molecular system to a
phonon bath, represented by the Hamiltonian

Ĥ = Ĥmol +∑
j

h̄ν j

(
b̂†

j b̂ j +
1
2

)
−K0X̂ ∑

j
X̂ j (2)

where X̂ =
√

h̄
2Mν

(
â† + â

)
, and the index j labels the degrees

of freedom of the bath. The bath vibrational mode j has angu-
lar frequency ν j, and raising and lowering operators b̂†

j and b̂ j.
For the sake of simplicity, we have used the same mass M for
the molecular vibration and for the phonon bath. Following
the Redfield formalism, it is possible to derive the following
master equation for the evolution of the reduced molecular
density operator

ih̄
dρ̂(t)

dt
=
[
Ĥmol, ρ̂(t)

]
−
[
X̂ ,
([

χ̂
(1), ρ̂(t)

]
+
{

χ̂
(2), ρ̂(t)

})]
,

(3)
The matrix elements of χ̂(1) and χ̂(2) are defined in terms of
the eigenstates |i〉 of the system,

χ
(1)
i j =

iπXi jK2
0 (2N(|ωi j|)+1)

4M|ωi j|∆ω
,

χ
(2)
i j =−

iπXi jK2
0

4Mωi j∆ω
,

(4)

where Xi j = 〈i|X̂ | j〉, h̄ωi j = Ei−E j and ∆ω = ωmax−ωmin,
being Ei the energy of the eigenstate i, and ωmax and ωmin
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TABLE I. Molecular and bath parameters.

Parameter Value
h̄ω 1.63 eV
h̄ν 0.11 eV
K0 3.37 eV/Å2

M 10.0 AMU
ωmin 0.054 eV
ωmax 0.163 eV
T 0.0 K
d 0.13 Å

FIG. 3. Evolution of the vibrational occupations of the ground (full
line), and excited (dashed lines) states, after the application of the
laser pulse.

the maximum and minimum frequencies of the bath respec-
tively. The derivation of these terms, the master equation and
its relation with the standard Redfield equation can be found
in Appendix A. The parameters used for our first test calcu-
lations are given in Table I. Initially the system occupies the
state |g,0〉 (where the first index indicates the electronic state
and the second one the vibrational quantum number) and is
then perturbed by a laser pulse. This stage is modelled by the
following Hamiltonian

Ĥ = Ĥmol−Ex(t)µ̂x

= Ĥmol− eEx(t)
(
X̂− x̂

)
.

(5)

This new term corresponds to the laser, where x̂ = xegσ̂x, σ̂x =
|e〉〈g|+ |g〉〈e|, and the electric field Ex(t) = E0cos(ω0(t −

t0))e
−
(

t−t0
σ

)2

, with h̄ω0 = 1.85 eV, σ = 1.21 fs, t0 = 6.05 fs,
and E0 = 0.514 V Å−1. After the initial perturbation (t = 24.2
fs), the system evolves according to Equation 3, which de-
scribes the vibrational relaxation. In Figure 3 we see how the
occupation of state |g,0〉 decreases during the duration of the
pulse, and how this density transitions to the states |e, j〉 cor-
responding to a coherent state on the upper energy surface.
Thereafter, equation 3 induces the thermalization of the ex-
cited density down to the state |e,0〉, in approximately 250
fs. The bath does not include high frequency modes so it is

FIG. 4. Evolution of the vibrational occupations of the ground state
(full lines), and excited state (dashed line), after the thermalization
and during the radiative decay driven by the CEED Hamiltonian,
with Ka = 5.0×107 .

decoupled from electronic transitions. Because of this, the vi-
brational degrees of freedom thermalize to T = 0 K, with no
further relaxation.
At t = 480 fs, when we consider the stationary state converged
enough, the phonon bath is turned off. From then on, we
evolve the density under the CEED Hamiltonian18,19 to in-
clude the radiative emission

i h̄
dρ̂

dt
= [Ĥmol, ρ̂]+Ka

eµ0

i6πch̄
〈µ̈〉
[[

x̂, Ĥmol
]
, ρ̂
]
, (6)

where the numerical factor Ka is included to accelerate the
dissipation and let the system reach the ground state within an
accessible simulation time18. The decay time of this process is
usually in the order of nanoseconds. With the help of Ka this
time is artificially reduced to hundreds of femtoseconds. We
assume here that the difference in time-scales between ther-
mal relaxation and radiative emission is large enough to treat
them as separate, uncoupled processes. Figure 4 shows how
the vibrational occupations change during the radiative decay
driven by Equation 6. We can see how the excited state emp-
ties completely as the ground state occupations grow. The
final occupations after the emission can be compared with
the expected values predicted by the Franck-Condon princi-
ple (FCP) and the Fermi Golden Rule (FGR). In Figure 5 we
can see the differences between the expected and final occupa-
tions obtained from the CEED Hamiltonian. The differences
converge as Ka decreases: in particular, the final populations
are insensitive to the acceleration factor when this is smaller
than 3×107. As it was already shown in previous works18,19,
CEED depends on the coherences among the electronic states.
At the same time, these coherences are affected by the dynam-
ics of the wave packet which oscillates in the ground state as
the system decays radiatively. When the decay rate is in the
order of the oscillation frequency of the lower state (which
may occur for large values of Ka), the oscillation affects the
relative decay rates among the states and the final occupations.
This effect is no longer relevant as Ka decreases since in that
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FIG. 5. Difference between the expected and the obtained final oc-
cupations by CEED with different values of Ka.

situation the dynamics depends on the evolution of the occu-
pations and not on the coherences.19 This is the case for the
value of Ka that we used in all our simulations. Nevertheless,
we see that the first two occupations are overestimated and
the higher occupations are underestimated despite the conver-
gence of Ka (Figure 5). The differences are small, of 15%
or less. However, Figure 5 indicates that even though CEED
describes fluorescence qualitatively, part of the physics is not
well represented. The next section sheds light on this.
Our approach allows us to obtain the spectral density S(t,ω)
of the time-dependent dipole moment for a specific stretch of
the dynamics centered on time t and extending from t−T/2
to t +T/2 :22

S(t,ω) =
∫ t+T/2

t−T/2
C(t,τ)e−iωτ dτ, (7)

with C(t,τ) being, in our case, the classical time-correlation
function associated with time t, calculated here as

C(t,τ) = [µ(t)−〈µ〉(t)]× [µ(t + τ)−〈µ〉(t)] , (8)

where the dynamical dipole is measured relative to its average
value on the same interval, 〈µ〉. Thus S(t,ω) reflects the spec-
tra for different stages around time t. Depending on the stage,
the result corresponds to the absorption or emission spectrum.
Figure 6 shows S(t,ω) at different times during the simula-
tions depicted in Figure 3 and 4. For t < 480 fs we get the
absorption spectrum of the system. The band amplitudes de-
crease as the system thermally relaxes. At t = 300 fs only the
absorption peak of lowest frequency survives, corresponding
to the transition |g,0〉 → |e,0〉. For t > 480 fs, new peaks ap-
pear corresponding to the emission process. Their amplitudes
also decrease as the electronic relaxation continues, but the
spectrum shape is constant as it is expected. Since we do not
include the thermal relaxation after the radiative emission the
vibrational frequency keeps appearing in the spectrum at low
frequencies, but this has no effect on the fluorescence spec-
trum. About the position of the peaks (frames with t = 1300

FIG. 6. Spectral density for different times along the dynamics (Ka =
5.0× 107 in Eq. 6). The horizontal axis represents the transition
energy relative to h̄ω and scaled by h̄ν

fs or t = 1600 fs of Figure 6), they agree with some of the
expected emission frequencies for this system. However, as
we have already seen for the case of the final occupations, the
relative amplitudes of the emission frequencies do not follow
the expected distribution according to the FCP. Figure 7 shows
these drastic differences among the relative intensities.

B. The anharmonic case

For our second test, we considered a more realistic case.
We use the same molecular Hamiltonian, but now we include
the interaction between the two energy surfaces, giving place
to anharmonicity:

Ĥmol =
(

h̄ω + h̄νQ− h̄ν
√

Q
(
â† + â

))
|e〉〈e|− τσ̂x

+ h̄ν

(
â†â+

1
2

)
.

(9)

Table II shows the parameters used for this case. These are
similar to those used by Giavazzi et al11. The system was ex-
cited with a similar electric pulse as adopted in the first test,
but now ω0 = 2.73 eV and E0 = 0.771 eV/Å−1. We used the
same protocol and activation times for the bath and CEED.
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FIG. 7. Spectral density at t = 1300 fs from Figure 6 (red), compared
with the expected intensities (green), according to FCP.

TABLE II. Molecular and bath parameters for the anharmonic sys-
tem.

Parameter Value
h̄ω 1.824 eV
h̄ν 0.172 eV
K0 6.74 eV/Å2

M 10.0 UMA
ωmin 0.086 eV
ωmax 0.258 eV
T 0.0 K
d 0.11 Å
τ 0.88 eV

Again we use the Fourier transform of the correlation function
to get the spectrum resolved in time (Figure 8). Now we keep
observing an intense peak after the thermal dissipation. It cor-
responds to the minimum absorption frequency and continues
after the relaxation due the coherence between the ground and
the excited states. For t > 480 fs, after the activation of CEED,
this peak loses intensity, and new peaks appear because of the
emission process. In Figure 8 we see the fluorescence spec-
trum at 739 fs. The main peak is located at 2.39 eV and other
two less intense ones appear at 2.55 eV and 2.22 eV. Again,
the amplitudes do not correspond to the expected distribution
according to FCP (Figure 9). And once more, we observe an
intense attenuation of peaks far from the main transitions.
In previous works18,19, we showed that CEED respects the se-
lection rules during the relaxation. In fact, the missing peaks
in the emission spectrum are not absent but attenuated, a con-
sequence of big differences on the decay rates for each transi-
tion.

III. COMPARING QED AND CEED

In order to understand the reason for the observed discrep-
ancies in this section we will work in the length gauge with

FIG. 8. Spectral density at different times, for the anharmonic system
(Ka = 5.0×107 in Eq. 6).

FIG. 9. Spectral density at t = 739 fs from Figure 8 (red), compared
with the expected intensities (green) according to FCP.

the non-relativistic QED Hamiltonian

Ĥ = Ĥmol +∑
k

h̄ωk

(
N̂k +

1
2

)
−∑

k
Êk · µ̂, (10)

where N̂k is the occupation operator of the photon with wave
vector k = (kx,ky,kz) and with its corresponding frequency
ωk = ck. µ̂ is the electronic dipole moment operator and Êk
is the photon electric field operator, which can be expanded as



Fluorescence in Quantum Dynamics: Accurate Spectra Require Post-Mean-Field Approaches 6

a function of the photon creator and annihilator operators (â†,
â)

Êk =−i
2

∑
λ=1

εk,λ

(
h̄ωk

2ε0V

)1/2

(â†
k,λ − âk,λ ), (11)

where V is the normalisation volume and we have considered
the dipole approximation, eik·r ≈ 1.
Again, we can use the Redfield formalism to obtain the master
equation for the evolution of the reduced molecular density
operator using the Hamiltonian of Equation 10

i h̄
dρ̂

dt
= [Ĥmol, ρ̂]+ e[x̂,([χ̂(1), ρ̂]+{χ̂(2), ρ̂})], (12)

where x̂ is the position operator, and now the matrix elements
of the operators χ̂(1) and χ̂(2) are

χ
(1)
i j =−

iexi j|ωi j|3

12πε0c3 (2N(|ωi j|)+1)

χ
(2)
i j =

iexi jω
3
i j

12πε0c3 .

(13)

where now N(|ωi j|) is the occupation of the photon mode
with frequency |ωi j| at temperature T . The derivation of these
terms and the master equation can be found in Appendix B
On the other hand we have the Liouville equation combined
with the CEED Hamiltonian, now without the factor of Ka:

i h̄
dρ̂

dt
= [Ĥmol, ρ̂]+

eµ0

i6πch̄
〈µ̈〉
[[

x̂, Ĥmol
]
, ρ̂
]
. (14)

A straightforward comparison between Equations 12 and 14
can be done by studying the evolution of the occupations, i.e.,
the diagonal elements of the density matrix, ρ j j. This anal-
ysis is greatly simplified by noting that the characteristic fre-
quencies of the diagonal elements are much lower than those
of the off-diagonal elements, which allows for averaging out
over fast modes to obtain rate equations. In ref.19 (see Equa-
tion 10 and the Appendix in that paper) the following relation
is derived from Eq. 14:

dρ j j

dt
=

e2

3πε0c3h̄
ρ j j ∑

k
ρkkω

3
k j|xk j|2. (15)

Using the same approach, it is possible to start from Equation
12 to get:

dρ j j

dt
=

e2

3πε0c3h̄

(
∑
k< j

ρ j jω
3
k j|xk j|2 + ∑

k> j
ρkkω

3
k j|xk j|2

)
,

(16)
If we consider the simplest case where the transition involves
one initial excited state i and one final ground state f , we get
from equation 16 the FGR behavior:

dρii

dt
=− e2

3πε0c3h̄
ω

3
i f |xi f |2ρii, (17)

FIG. 10. Transition from one initial |i〉 state to many final states | f 〉

while from Equation 15 the result is

dρii

dt
=− e2

3πε0c3h̄
ω

3
i f |xi f |2ρiiρ f f

=− e2

3πε0c3h̄
ω

3
i f |xi f |2ρii(1−ρii).

(18)

As shown in18,19, when the initial state is almost empty the
rate equation obtained from CEED closely reproduces the
FGR result. This agreement is also achieved if the transition
goes sequentially from one state to another. Once the upper
state is almost empty, the decay follows an exponential rate
which agrees with FGR.18

We now consider a different scenario relevant to fluorescence.
Fluorescent processes usually imply the transition from a
given initial state i to a multiplet of final states f , where the
energy difference between the initial and final states is much
larger than the energy differences between the possible final
states (Figure 10). With this in mind, and assuming for argu-
ment’s sake that the transition matrix elements xi f are compa-
rable for different final states, we can write Equation 16 as

dρii

dt
≈− e2

3πε0c3h̄
ρii ∑

f
ω

3
i f |xi f |2

=−
N f e2

3πε0c3h̄
ω

3
i f |xi f |2ρii,

(19)

where N f is the number of final states. Equation 15 by contrast
becomes

dρii

dt
≈− e2

3πε0c3h̄
ω

3
i f |xi f |2ρii ∑

f
ρ f f

=− e2

3πε0c3h̄
ω

3
i f |xi f |2ρii(1−ρii).

(20)

Even though this last expression predicts the exponential de-
cay when the initial state is almost unoccupied, the decay con-
stant is suppressed by a factor of N compared with the QED
prediction. The differences turn out to be larger if the simpli-
fying assumptions are removed. Equation 16 still describes an
exponential decay,

dρii

dt
=− e2

3πε0c3h̄
ρii ∑

f
ω

3
i f |xi f |2, (21)
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FIG. 11. Transition process from one energy surface to a lower one,
involving two coherent states represented with red curves.

but Equation 15 describes a more complex dynamics,

dρii

dt
=− e2

3πε0c3h̄
ρii ∑

f
ρ f f ω

3
i f |xi f |2, (22)

where ρ f f < 1, which implies that the decay rate predicted by
CEED is again lower than the one predicted by QED.
Particularly, we are interested in the case depicted in Figure
11. Here the deexcitation involves two coherent states, as ex-
pected during a vertical transition. In this case, we have that
ρ f f ∝ |xi f |2. According to Equation 16, the evolution of the
occupations of the final states depend only on the occupation
of the initial state:

dρ f f

dt
=

e2

3πε0c3h̄
ω

3
i f |xi f |2ρii. (23)

By contrast, Equation 15 gives the following expression for
the evolution of the final states:

dρ f f

dt
∝

e2

3πε0c3h̄
ω

3
i f |xi f |4ρii, (24)

where now the population rate of each final state depends on
|xi f |4.
These differences in the decay rates can explain the drastic
differences observed in the emission spectrum. Comparing
Equation 21 with Equation 22, it is possible to say that CEED
decay rates are weighted by the occupations of the final states.
Apparently, these weights affect in the same way the transition
terms |xi j|2 involved in the amplitude of the spectral lines. In
this way, the faster the states are occupied the higher the spec-
tral signal.

IV. COMMENTS AND CONCLUSION

In this work we explored the use of CEED, a semiclassi-
cal equation of motion to model energy dissipation associ-
ated with radiative decay, to describe fluorescence in two sim-
ple molecular models. The comparison with full QED sim-
ulations exposed incorrect modelling of fluorescence when
mean-field light-matter interaction is used. The Appendix C
demonstrates that CEED is a mean-field light-matter theory
akin to Ehrenfest dynamics: our model underestimates the

real decay constants whenever the transition involves a multi-
plet of closely spaced final states. Considering Equation 24,
the semiclassical method and the photon bath will lead to dif-
ferent relative distributions of occupations, affecting the rela-
tive amplitudes in the emission spectrum. The difference can
be traced back to the mean-field nature of our model, led by
the term 〈µ̈〉 in Equation 6. From our results we conclude that
the wrong transition rates arise from two effects: the already
known fact that Ehrenfest dynamics describes stimulated, as
opposed to spontaneous emission; and the incorrect weight-
ing due to the splitting of the final weight among states in
the multiplet. This last problem applies to other semiclassical
approaches and ab initio methods such as MPKS. Real-time
dynamics using these models will lead to unphysical results
when multiplets of final states are involved. This effect is crit-
ical for the study of light-matter interaction and this work is,
to our knowledge, the first report of this problem.
Despite the limited accuracy, our semi-classical model in-
cludes the same transitions as those predicted by the QED
model, and the emission spectrum of the system is easily ac-
cessed through the Fourier transform of the dipole moment
time-correlation function during the decay process. Even
though we expect to obtain an incorrect distribution of spectral
amplitudes, we can guarantee that the peaks will be rightly lo-
cated at the corresponding emission frequencies, without any
prior assumption about the nature of the molecular Hamilto-
nian. We consider this an advantage over the use of QED
models in electron dynamics, since the latter does not include
electron relaxation nor provides access to the spectral infor-
mation easily if the eigenvalues of the system are unknown.
We hope that this work will stimulate further studies on the
properties and limitations of mean-field light-matter dynam-
ics, which requires application to other radiative phenomena.
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Appendix A: Derivation of the master equation based on the
Redfield formalism to include a phonon bath

The exact Liouville equation for the evolution of the molec-
ular density operator ρ̂mol according to the Hamiltonian of
Equation 2 is

ih̄
dρ̂mol(t)

dt
=
[
Ĥmol, ρ̂mol(t)

]
−∑

k

[
K0X̂ ,Φ̂k(t)

]
(A1)

where Φ̂k(t) = Trbath{X̂kρ̂(t)}, being ρ̂ the total density oper-
ator. In order to get an expression for Φ̂k(t) we write the exact
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solution for the density

ρ̂(t) = e−
i
h̄ Ĥ0t

ρ̂(0)e
i
h̄ Ĥ0t

− 1
ih̄ ∑

k

∫ t

0
e

i
h̄ Ĥ0(τ−t) [K0X̂kX̂ , ρ̂(τ)

]
e−

i
h̄ Ĥ0(τ−t)dτ,

(A2)
with Ĥ0 the unperturbed Hamiltonian in the absence of bath-
molecule interactions. Now we can write

Φ̂k(t) =−
K0

ih̄
Trbath

{
∑
k′

∫ t

0
X̂τ−t X̂kX̂τ−t

k′ ρ̂
τ−t(τ)dτ

−
∫ t

0
ρ̂

τ−t(τ)X̂τ−t
k′ X̂kX̂τ−tdτ

}
,

(A3)

where we use the notation Q̂t = e
i
h̄ Ĥ0tQ̂e−

i
h̄ Ĥ0t .

We can apply the decomposition ÂB̂ = (1/2)[Â, B̂] +
(1/2){Â, B̂}, to get

Φ̂k(t) =−
K0

2ih̄
Trbath ∑

k′

∫ t

0
[X̂τ−t , ρ̂τ−t(τ)]{X̂k, X̂τ−t

k′ }dτ

− K0

2ih̄
Trbath ∑

k′

∫ t

0
{X̂τ−t , ρ̂τ−t(τ)}[X̂k, X̂τ−t

k′ ]dτ.

(A4)
Assuming that the bath oscillators are not affected by the
molecule, it holds:

∑
k′
[X̂k, X̂τ−t

k′ ] =
ih̄

Mνk
sin(νk(τ− t)), (A5)

Trbath ∑
k′

(
{X̂k, X̂τ−t

k′ }ρ̂
τ−t
bath(τ)

)
≈ h̄

Mνk
(2Nk(τ)+1)cos(νk(τ−t)),

(A6)
where Nk is the vibrational occupation of the bath-mode k.
Finally we get

Φ̂k(t) =

− K0

2iMνk

∫ t

0
[X̂τ−t , ρ̂τ−t

mol (τ)](2Nk(τ)+1)cos(νk(τ− t))dτ

− K0

2Mνk

∫ t

0
{X̂τ−t , ρ̂τ−t

mol (τ)}sin(νk(τ− t))dτ

(A7)
To proceed further we make two considerations. First, we take
the summation in Equation A1 as an integral on the degrees
of freedom of a continuum bath. Second, we use the basis of
the vibronic states (i and j). With this in mind, the following
matrix elements can be written:

χ
(1)
i j =

∫
ωmax

ωmin

− K0

2iMνk∆ω
(2Nk+1)

∫ t

0
Xτ−t

i j cos(νk(τ−t))dτ dνk,

(A8)

χ
(2)
i j =

∫
ωmax

ωmin

− K0

2Mνk∆ω

∫ t

0
Xτ−t

i j sin(νk(τ− t))dτ dνk.

(A9)
The integrals extend between ωmax and ωmin, the maximum
and minimum frequencies of the phonon bath, with ∆ω =
ωmax−ωmin, and ωi j =ωi−ω j, where h̄ωi is one of the eigen-
values of the vibronic system.
The first integral can be rewritten as

χ
(1)
i j =

∫
ωmax

ωmin

− K0

2iMνk∆ω
(2Nk +1)

∫ t

0
Xi jeiωi j(τ−t) eiνk(τ−t)+ e−iνk(τ−t)

2
dτ dνk (A10)

and solved by introducing a variable change, s = τ − t, and
evaluating the following limits:

lim
ε→0+

lim
s→−∞

Xi j

2

∫ 0

s
ei(ωi j+νk−iε)s + ei(ωi j−νk−iε)sds

= lim
ε→0+

Xi j

2i

(
1

ωi j +νk− iε
+

1
ωi j−νk− iε

)
= lim

ε→0+

Xi j

2i

(
ωi j +νk + iε

(ωi j +νk)2 + ε2 +
ωi j−νk + iε

(ωi j−νk)2 + ε2

)
=

Xi j

2i

(
1

ωi j +νk
+

1
ωi j−νk

+πiδ (ωi j +νk)+πiδ (ωi j−νk)

)
.

(A11)
In this way we can write

χ
(1)
i j =

∫
ωmax

ωmin

Xi jK0(2Nk +1)
4Mνk∆ω

(
1

ωi j +νk

+
1

ωi j−νk
+πiδ (ωi j +νk)+πiδ (ωi j−νk)

)
dνk.

(A12)

Operating in the same way for χ
(2)
i j , from Equation A9 we can

get the expression

χ
(2)
i j =

∫
ωmax

ωmin

Xi jK0

4Mνk∆ω

(
1

ωi j +νk
− 1

ωi j−νk

+πiδ (ωi j +νk)−πiδ (ωi j−νk))dνk.
(A13)

We neglect the terms related with the Lamb shifts. The re-
maining terms are easily integrated and produce the required
thermalization,

χ
(1)
i j ≈

∫
ωmax

ωmin

Xi jK0(2Nk +1)
4Mνk∆ω

(πiδ (ωi j +νk)+πiδ (ωi j−νk))dνk

=
iπXi jK0(2N(|ωi j|)+1)

4M|ωi j|∆ω
,

(A14)



Fluorescence in Quantum Dynamics: Accurate Spectra Require Post-Mean-Field Approaches 9

χ
(2)
i j ≈

∫
ωmax

ωmin

Xi jK0

4Mνk∆ω
(πiδ (ωi j +νk)−πiδ (ωi j−νk))dνk

=−
iπXi jK0

4Mωi j∆ω
,

(A15)
where ωmin < |ωi j| < ωmax (outside this range the matrix el-
ements are equal to zero). These matrix elements are then
employed to form Equation 3.
As an alternative, it is possible to replace the approximations
in Equation A14 and A15 by the numerical solutions of the in-
tegrals. Nevertheless, this would imply the replacement of the
Dirac deltas by a parameterized expression and a finite num-
ber of phonons in the bath. This would require a preliminary
calibration process preceding the simulations23.
Equation 3 can also be expressed in the standard form of the
Redfield equation

dσi j(t)
dt

=−iωi jσi j(t)+∑
kl

Ri jklσkl(t). (A16)

Here σi j(t) = 〈i|ρ̂mol(t)| j〉, and Ri jkl is the Redfield tensor

Ri jkl = Γ
+
l jik +Γ

−
l jik−δ jl ∑

m
Γ
+
immk−δik ∑

m
Γ
−
lmm j. (A17)

Using our derivation, it is possible to write this terms in func-
tion of the elements χ

(1)
i j and χ

(2)
i j

Γ
+
l jik =

1
ih̄

Xl j

(
χ
(1)
ik +χ

(2)
ik

)
,

Γ
−
l jik =

1
ih̄

Xik

(
χ
(1)
l j −χ

(2)
l j

)
.

(A18)

We chose to use the expression shown in Equation 3 in the
main text for its simplicity and generality.

Appendix B: Derivation of the master equation based on the
Redfield formalism to include a photon bath

We define the unit vector from Equation 11, εk,λ =

(εx
k,λ ,ε

y
k,λ ,ε

z
k,λ ), to satisfy the next conditions

εk,1 =
e1×k
|e1×k|

,

εk,2 = εk,1×
k
|k|

,

(B1)

where e1 is the unit vector in the x direction. This conditions
help us to simplify the expression of the interaction term if we
consider that µ̂= µ̂xe1

Êk · µ̂= Êx
kµ̂x =−iε

x
k,2

(
h̄ωk

2ε0V

)1/2

(â†
k− âk)µ̂x,

=−i
(k2

z + k2
y)

1/2

|k|

(
h̄ωk

2ε0V

)1/2

(â†
k− âk)µ̂x.

(B2)

For sake of simplicity, we ignored the λ index from â†
k and âk

operators. Again, we use the Liouville equation

ih̄
dρ̂mol(t)

dt
= [Ĥmol, ρ̂mol(t)]−∑

k
[µ̂x,Φ̂k(t)] (B3)

where Φ̂k(t) = Trbath{Êx
kρ(t)}, and now the trace is over the

photon modes. Henceforth, we will replace Êx
k and µ̂x by Êk

and −ex̂ respectively. The exact solution of the density is

ρ̂(t) = e−
i
h̄ Ĥ0t

ρ̂(0)e
i
h̄ Ĥ0t

+
1
ih̄ ∑

k

∫ t

0
e

i
h̄ Ĥ0(τ−t)[eÊkx̂, ρ̂(τ)]e−

i
h̄ Ĥ0(τ−t)dτ,

(B4)

where we are using the same notation as in Appendix A, and
following the same steps we get

Φ̂k(t) =
e

2ih̄
Trbath ∑

k′

∫ t

0
[x̂τ−t , ρ̂τ−t(τ)]{Êk, Êτ−t

k′ }dτ

+
e

2ih̄
Trbath ∑

k′

∫ t

0
{x̂τ−t , ρ̂τ−t(τ)}[Êk, Êτ−t

k′ ]dτ.

(B5)

Making similar assumptions to those we made for the case of
the phonon bath, we can use

∑
k′
[Êk, Êτ−t

k′ ] = i
k2

z + k2
y

|k|2
h̄ωk

ε0V
sin(ωk(τ− t)), (B6)

and the approximation

Trbath ∑
k′

(
{Êk, Êτ−t

k′ }ρ̂
τ−t
bath(τ)

)
≈

k2
z + k2

y

|k|2
h̄ωk

ε0V
(2Nk(τ)+1)cos(ωk(τ−t)),

(B7)
to finally get

Φ̂k(t) =
eωk

2iε0V
k2

z + k2
y

|k|2
∫ t

0
[x̂τ−t , ρ̂τ−t

mol (τ)](2Nk(τ)+1)cos(ωk(τ− t))dτ

+
eωk

2ε0V
k2

z + k2
y

|k|2
∫ t

0
{x̂τ−t , ρ̂τ−t

mol (τ)}sin(ωk(τ− t))dτ.

(B8)
As before, we replace the summation of the photon modes
with an integral and we define the following matrix elements

χ
(1)
i j =

∫
∞

0

eω3
k

6iπ2ε0c3 (2Nk +1)
∫ t

0
xτ−t

i j cos(ωk(τ− t))dτ dωk,

(B9)

χ
(2)
i j =

∫
∞

0

eω3
k

6π2ε0c3

∫ t

0
xτ−t

i j sin(ωk(τ− t))dτ dωk. (B10)

The integrals in function of time can be solved in the same
way as in the Appendix A. Here we also ignore the terms re-
lated to the Lamb shift, and we finally get the expressions

χ
(1)
i j ≈−

∫
∞

0

exi jω
3
k

12π2ε0c3 (2Nk +1)(πiδ (ωi j +ωk)+πiδ (ωi j−ωk))dωk

=−
iexi j|ωi j|3

12πε0c3 (2N(|ωi j|)+1),

(B11)
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χ
(2)
i j ≈−

∫
∞

0

exi jω
3
k

12π2ε0c3 (πiδ (ωi j +ωk)−πiδ (ωi j−ωk))dωk

=
iexi jω

3
i j

12πε0c3 .

(B12)

Appendix C: CEED derivation

Here we show that CEED is a mean-field theory. In the
Coulomb gauge we have24

∇
2
φ =− ρ

ε0(
∇

2− 1
c2

∂ 2

∂ t2

)
~A =− 1

c2ε0
~j⊥ (C1)

where ρ is the charge density, ε0 is the permittivity of free
space, c is the speed of light, and ~j⊥ is the transverse compo-
nent of the current density and satisfies ~∇ ·~j⊥ = 0. This has
the solution

~A(~rt) =−eµ0

4π

∫ ~j⊥
(
~r′, t− 1

c |~r
′−~r|

)
|~r′−~r|

d~r′ (C2)

If we associate the term involving φ with the usual
Coulomb interaction between electrons, then we can make it
part of the electronic Hamiltonian. The free field Hamiltonian
Hp then just depends on the vector potential

Hp(~A) =
1
2

∫ ( 1
ε0
~Π2 + ε0c2

(
~∇×~A

)2
)

d~r (C3)

where ~Π = ε0
∂~A
∂ t is the momentum conjugate to ~A.

Now let us consider the coupled system of electrons and
electromagnetic fields. Let ~xi represent the position of elec-
tron i and ~pi be the corresponding momentum. The Hamil-
tonian Ĥ describing the interacting system of electrons and
photons then has the form

Ĥ = Ĥe({~̂xi,~̂pi})+ Ĥp(~̂A)+ Ĥep({~̂xi,~̂pi},~̂A) (C4)

where we have replaced classical variables with quantum op-
erators. Here Ĥe is the electronic Hamiltonian, Ĥp is the pho-
tonic Hamiltonian and Ĥep is the interaction Hamiltonian. The
quantum Liouville equation for the interacting system is then

ih̄
∂ ρ̂S

∂ t
=
[
Ĥ, ρ̂S

]
(C5)

where ρ̂S is the density matrix for the whole system (electrons
and photons). If we trace out the photons we get an equation
for an electronic density matrix ρ̂ = Trp {ρ̂S}

ih̄
∂ ρ̂

∂ t
=
[
Ĥe, ρ̂

]
+Trp

{[
Ĥep, ρ̂S

]}
(C6)

We shall keep just the term in the interaction Hamiltonian that
is linear ~A

Ĥep = e
∫
~̂j(~r) · ~̂A(~r)d~r (C7)

where

~̂j(~r) =
1

2m ∑
i

(
~̂piδ

(
~r−~̂xi

)
+δ

(
~r−~̂xi

)
~̂pi

)
(C8)

The core approximation we now make is the mean field
ansatz

ρ̂S = ρ̂⊗ ρ̂p (C9)

where ρ̂p is the photon density matrix. From this we get

ih̄
∂ ρ̂

∂ t
=
[
Ĥe +

〈
Ĥep
〉

p , ρ̂
]

(C10)

where〈
Ĥep
〉

p = Trp
{

Ĥepρ̂p
}
= e

∫
~̂j(~r) ·~A(~r)d~r (C11)

and

~A(~r) = Trp

{
~̂A(~r)ρ̂p

}
~j(~r) = Tre

{
~̂j(~r)ρ̂

}
(C12)

If we substitute Eq. C8 into Eq. C11 we get〈
Ĥep
〉

p =
e

2m ∑
i

(
~̂pi ·~A(~̂xi)+~A(~̂xi) · ~̂pi

)
(C13)

If retardation effects are small, we can approximate Eq. C2
by

~A(~rt)≈ ~A0(~rt)+~A1(~rt) (C14)

where

~A0(~rt) =−eµ0

4π

∫ ~j⊥ (~r′, t)
|~r′−~r|

d~r′

~A1(~rt) =
eµ0

4πc
∂

∂ t

∫
~j⊥
(
~r′, t
)

d~r′ (C15)

We can identify ~A0(~rt) with the non-radiating magnetic field,
thus we will only consider the contribution from ~A1(~rt). From
Eqs. C12 and C8 we get∫

~j⊥(~r)d~r =
2
3

1
m ∑

i
Tre

{
~̂piρ̂

}
=

2
3 ∑

i
~̇xi (C16)

where

~xi = Tre

{
~̂xiρ̂

}
(C17)

Substituting Eq. C16 into Eq. C15 gives

e~A1(~rt) =
2
3

α h̄
c2 ∑

i
~̈xi (C18)

where α is the fine structure constant. If we argue that ra-
diation is a result of dipolar terms (~A1 is uniform over the
molecule), then Eq. C13 can be simplified to〈

Ĥep
〉radiation

p =
2α h̄
3c2 ∑

i j

~̂p j

m
·~̈xi (C19)
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