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The dynamical description of the radiative decay of an electronically excited state in realistic
many-particle systems is an unresolved challenge. In the present investigation electromagnetic
radiation of the charge density is approximated as the power dissipated by a classical dipole, to
cast the emission in closed form as a unitary single-electron theory. This results in a formalism of
unprecedented efficiency, critical for ab-initio modelling, which exhibits at the same time remarkable
properties: it quantitatively predicts decay rates, natural broadening, and absorption intensities.
Exquisitely accurate excitation lifetimes are obtained from time-dependent DFT simulations for
C2+, B+ and Be, of 0.565, 0.831 and 1.97 ns respectively, in accord with experimental values of
0.57±0.02, 0.86±0.07 and 1.77-2.5 ns. Hence, the present development expands the frontiers of
quantum dynamics, bringing within reach first-principles simulations of a wealth of photophysical
phenomena, from fluorescence to time-resolved spectroscopies.

Introduction.— Time-dependent electronic structure
simulations are currently applied to fundamental phe-
nomena at the nanoscale, from spectroscopy [1–4] and
photochemistry [5–8] to quantum conductance [9–13] and
energy transfer in molecules and materials [2, 14–17]. De-
spite the insight that these simulations provide, they lack
an important ingredient: the radiative energy dissipa-
tion for any charge density evolving in time. This miss-
ing piece will affect the electron dynamics in accordance
with the magnitude and rate of the density fluctuations.
Without it, the energy absorbed during the excitation of
a molecule at zero temperature will remain in the system
in the form of undamped dipole oscillations, indefinitely
in time [18], which is unphysical.

Different schemes have been proposed to account for
the radiative decay or spontaneous emission in electron
dynamics. Treatments rooted in quantum electrodynam-
ics have been devised to propagate jointly the electronic
density and the quantized electromagnetic field [19–23].
Such approaches are important in situations with strong
photon-electron coupling as occurs under intense laser
fields, or the interaction of light with molecules or quan-
tum dots in optical cavities [24, 25]. However, the high
dimensionality of the Hilbert space containing the pho-
ton modes demands a truncation or simplification of the
electromagnetic quantum field for numerical tractability.
A recent development is the application of the exact fac-
torization approach to light-matter interaction [26–28].

An alternative route to model light-matter coupling is
to describe the electrons quantum-mechanically, and the
radiation field in terms of classical Maxwell equations.
The Maxwell-Bloch equations, and their generalization
the Maxwell-Liouville equations [29–33], or the Ehrenfest

method [34], illustrate this semiclassical treatment. In
this framework the classical electric and magnetic fields
evolve self-consistently with the electronic density ma-
trix. Most implementations of these methods have been
limited to just a few—often just two—level systems. An
overview and comparative analysis of these approaches
have been recently contributed by Nitzan, Subotnik, and
co-authors [34–36]. In particular, these researchers have
proposed a correction to Ehrenfest dynamics that, by
construction, reproduces spontaneous emission according
to the radiative decay rate deduced from Fermi’s golden
rule (FGR) [37].

Strategies that do not fit exactly in these groups have
been explored very recently [38, 39]. Furthermore, we
draw attention to Rashkovskiy’s work on the non-linear
Schrödinger equation, where thermal radiation and spon-
taneous emission are described without energy quantiza-
tion in a classical field framework [40, 41].

In the present study, starting from a mixed quantum-
classical Lagrangian and a dipolar approximation, we
formulate an equation of motion that describes radia-
tive dissipation in electronic systems without empirical
or fitted parameters. Despite its simplicity, this formal-
ism quantitatively captures much of the physics of ra-
diation emission and absorption, including the rates of
exponential decay, the natural broadening, and the rel-
ative intensities of absorption bands. Transparent and
inexpensive, this development introduces an alternative
approach of unprecedented accuracy and tractability that
overcomes the limitations of current methods, realizing
a goal that appeared remote: inclusion of the light-
matter interaction in first-principles time-dependent sim-
ulations of many-electron systems. Here we illustrate its
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strength, through the calculation of excited state life-
times in atomic species using time-dependent density
functional theory (TDDFT) in real time. The accuracy
obtained for this property, whose realistic estimation is a
theoretical challenge, demonstrates the predictive power
of the formalism.

Formulation.— For a set of electrons with mean-
field interactions, described by the wave-functions {|φj〉},
with a Hamiltonian Ĥ = −~2∇2/2m+ V̂e (V̂e is the po-
tential energy operator) and fixed nuclei, the Lagrangian
assumes the form

L = i~
∑
j

〈φj |φ̇j〉 − Ee (1)

where Ee is the electronic energy. In the presence of
forces not arising from a potential, as in the case of fric-
tion in viscous media, the Lagrange equations with gen-
eralized coordinates |φ〉 and |φ̇〉 read

d

dt

(
∂L

∂|φ̇j〉

)
− ∂L

∂|φn〉
+

∂F

∂|φ̇n〉
= 0 (2)

where F is Rayleigh’s dissipation function [42, 43]. In
classical mechanics it expresses the rate of energy dissi-
pation due to friction. To introduce the energy lost by
the electrons in the form of electromagnetic radiation, F
can be set equal to one half the radiation power Prad(t),
which in turn can be written for an arbitrary charge dis-
tribution in terms of the time derivative of the dipole
moment µ [44]:

Prad ∼=
µ0

6πc
[µ̈(t)]2 = 2F, (3)

where c and µ0 are the speed of light and the magnetic
permeability. Then the dissipative contribution is:

∂F

∂|φ̇n〉
=

1

2

∂Prad

∂|φ̇n〉
=

µ0

6πc
µ̈ · ∂µ̈

∂|φ̇n〉
. (4)

The dipole for the electronic system and its derivative
are expressed as

µ(t) =
∑
j

〈φj |µ̂|φj〉, (5)

∂µ

∂t
=
∑
j

〈φ̇j |µ̂|φj〉+
∑
j

〈φj |µ̂|φ̇j〉 (6)

where µ̂ = ex̂ is the dipole operator, with e the electron
charge and x̂ the position operator (extension to 3D is
discussed in the Supplemental Material [45]). To develop
this expression further, we rewrite the time-derivative of
the wave-functions in terms of a Schrödinger equation of
the form

|φ̇〉 = − i
~
H̃|φ〉 (7)

with H̃ a time-dependent Hamiltonian that incorporates
radiative emission—and which remains unknown for now.
This leads to

∂µ

∂t
=
∑
j

i

~
〈φj |[H̃, µ̂]|φj〉, (8)

∂2µ

∂t2
=
i

~
∑
j

〈φ̇j |[H̃, µ̂]|φj〉+〈φj |[H̃, µ̂]|φ̇j〉+〈φj |[ ˙̃H, µ̂]|φj〉,

(9)
and therefore the dissipative contribution becomes

∂F

∂|φ̇n〉
=
i

~
µ0

6πc
µ̈ · ∂

∂|φ̇n〉

∑
j

〈φj |[H̃, µ̂]|φ̇j〉

 . (10)

Collecting this derivative together with the other terms in
equation 2, taking the Hermitian conjugate, and equating
to zero, for the evolution of the wave-functions we obtain

|φ̇n〉 = − i
~
Ĥ|φn〉 −

µ0

6πc~2
µ̈ · [µ̂, H̃]|φn〉. (11)

Now, for equations 7 and 11 to be consistent, the follow-
ing relation should hold:

H̃ = Ĥ +
µ0

i6πc~
µ̈ · [µ̂, H̃], (12)

or

H̃ = Ĥ +
µ0

i6πc~
µ̈ · [µ̂, Ĥ] +

( µ0

i6πc~
µ̈
)2
· [µ̂, [µ̂, Ĥ]] + · · ·

(13)
Terms in this series scale as powers of the fine-structure

constant α = µ0e
2c

4π~ , where c is the speed of light. Con-
sidering α as a small parameter, we truncate it after the
second term [46], whereupon the effective Liouville equa-
tion for the electronic density matrix becomes

~
∂ρ̂

∂t
= −i[Ĥ, ρ̂]− A

~
[[µ̂, Ĥ], ρ̂] (14)

with A = µ0

6πc µ̈. This is our fundamental equation of
motion.
Validation.— To assess the properties of equation 14,

simulations of the evolution of the density matrix in time
were performed, employing a nearest neighbour tight-
binding (TB) model. Details of the Hamiltonian and the
time-integration algorithm are provided in the Supple-
mental Material. This model satisfies the main assump-
tions underlying Fermi’s golden rule, which provides a
framework to validate the outcome of the quantum sim-
ulations. Results for a two level system are presented in
Fig. 1. The electron density is allowed to evolve start-
ing from an excited state and suppressing the dissipation
term during the first steps. The dissipation is turned on
at∼ 20 fs, causing a decrease of the total—or electronic—
energy that, after an initial lag, exponentially decays to
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FIG. 1: (a) Electronic energy (black) and dipole moment
(blue) as a function of time for a two atom molecule simu-
lated with a TB model and equation 14. The dynamics was
started from an excited state in the absence of dissipation (see
text), which is turned on at ∼ 20 fs, at the point indicated
by the orange arrow. The red dashed line marks the ground
state level. (b) The electronic energy (black) is shown for the
same system along with the radiated power (red) calculated
from the Larmor formula. The green line depicts the temporal
integral of the radiated power plus the electronic energy.

the ground state level. Panel (a) shows the overshoot-
ing of the dipole moment oscillations coinciding with the
deexcitation: this is the classical fingerprint of photon
emission. As the system relaxes to the ground state the
dipole fluctuations are quenched and eventually vanish.

Under equation 14, a stationary solution will remain
at rest, since a constant dipole implies µ̈ = 0, which sup-
presses the dissipative term, consistent with the physics
behind the model. In the present example the departing
state is an excited configuration (exc) where the highest
energy orbital is replaced by a coherent mixture of the
HOMO and LUMO of the ground state (gs),

|φexcn 〉 = cos

(
θπ

2

)
|φgsn 〉+ sin

(
θπ

2

)
|φgsn+1〉 (15)

with n equal to the number of filled orbitals. In the spin-
less system explored in Fig. 1, where n=1 and θ=0.96,
the initial state is very close to the first excited eigenstate.
The low amplitude fluctuations of the dipole moment vis-
ible at the start in Fig. 1a result from the propagation
of this non-stationary state.

Panel (b) presents the radiated power in red, together
with the sum of the electronic and dissipated energies in

green, where the latter was computed as the time-integral
of the emitted power. In the dissipative dynamics this
sum is a conserved quantity, evincing the consistency of
the model. This follows from the energy balance

d〈Ĥ〉
dt

=
1

i~
〈[Ĥ, H̃]〉 = − A

~2
〈[Ĥ, [µ̂, H̃]]〉 ≈ − µ0

6πc
µ̈2,

(16)
where we have expanded µ̈ to first order in A. This out-
come for d〈Ĥ〉/dt is the radiation rate according to the
Larmor formula given in equation 3.

For a two level Hamiltonian with eigenstates |a〉 and
|b〉, and eigenvalues Ea and Eb = Ea + ~ωba, it is possi-
ble to show that the relaxation is determined by a rate
Γ = 4α

3c2ω
3
ba|〈a|x̂|b〉|2 as predicted by FGR for sponta-

neous emission (see Supplemental Material). Simulations
confirm that also in many-electron molecules the occu-
pations evolve in quantitative agreement with sponta-
neous emission. Comparison with the occupations de-
duced from FGR for systems of different sizes and inter-
actions show that the tails of the simulated curves closely
reproduce the theoretical decay rates, regardless of the
departing state; e.g. Γsim= 7.39×10−4 fs−1 vs ΓFGR=
7.42×10−4 fs−1 for a ten atom molecule (see Supplemen-
tal Material).

In Fig. 2 we present results for the deexcitation of a
four atom, one electron system, initially at the highest
energy state generated from a linear combination of the
third and fourth eigenfunctions, |φexcn 〉 = cos

(
θπ
2

)
|φgsj 〉+

sin
(
θπ
2

)
|φgsk 〉 with n = k = 4, j = 3, and θ = 0.96.

We see a cascade where excited states are sequentially
populated, one at a time, consistent with the symmetry
allowed transitions. The system approaches an eigenstate
hovering over it before relaxing to the next lower level,
eventually reaching the ground state. Notwithstanding
how close the wave-function comes to these stationary
solutions, which suppress the commutator of Ĥ and ρ̂,
the dipole fluctuations drive the dynamics forward. The
dipole oscillations are present throughout the process,
increasing during the transit from one eigenstate to the
next, fading completely after landing in the ground state.

Fig. 2b depicts the power spectrum computed from the
Fourier transform of the dipole moment. The two sharp
peaks reflect the three allowed transitions, of which 4→3
and 2→1 are degenerate. Two outcomes stand out: (i)
The ratio between the heights of the two peaks, equal
to 3.38, compares well with the ratio based on sponta-
neous emission, of 3.56. In the Supplemental Material
it is shown that similar agreement is found for oscilla-
tor strengths in the absorption spectra produced through
monochromatic illumination or excitation with a pulse of
white light. (ii) The computed lineshapes reproduce the
Lorentzians characteristic of natural broadening. The
blue curves in the insets of Fig. 2b represent the ex-
pected profiles according to spontaneous emission.

Excited states lifetimes in atomic species.— The ac-
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FIG. 2: (a) Electronic energy (black) and populations (N1,
N2, N3 and N4) as a function of time for a single-electron,
four-atoms TB model, departing from the highest energy ex-
cited state (see text). The eigenvalues are -6.4721, -2.4721,
2.4721, and 6.4721 a.u. (b) Power spectrum of the relaxation
process encompassing the 3→2 and 2→1 transitions. In the
insets, the spectral lineshapes (red) fit the Lorentzian profiles
(blue) inherent to natural broadening.

curate determination of radiative decay rates of elec-
tronic excitations in atoms and ions, of primary rele-
vance in atomic physics and spectroscopy and funda-
mental assets in astrophysics, represents a major chal-
lenge for both experiment and theory. The theoret-
ical side involves highly-demanding schemes such as
multi-configuration Dirac-Hartree-Fock theory or multi-
configuration Hartree-Fock theory, in the latter case fol-
lowed by the Breit-Pauli treatment [47]. Hence, the as-
sessment of fluorescence lifetimes (τ) of atomic species
entails a stringent test of our development. To this end,
equation 14 was implemented in a real time TDDFT
code developed in our group based on Gaussian func-
tions and pseudopotentials [48–50]. Details are given in
the Supplemental Material. With this approach the dissi-
pative quantum dynamics of a many-electron system can
be evolved from first-principles. An obstacle to simulate
fluorescence at this level of theory is that the associated
lifetimes typically fall in the order of nanoseconds, much
above the feasibility of TDDFT dynamics. To overcome
this difficulty, simulations were performed with an accel-

eration factor f in the equation of motion:

~
∂ρ̂

∂t
= −i[Ĥ, ρ̂]− f A

~
[[µ̂, Ĥ], ρ̂]. (17)

For each factor f a different decay rate Γ(f) is extracted.
Then, the rate corresponding to the non-accelerated evo-
lution, f = 1, is extrapolated from a plot of Γ(f) versus f .
Fig. 3 illustrates this treatment for the 2s2p(1P ) → 2s2

transition in the beryllium atom. The curves in Fig. 3a
that result from the excitation with a short electric pulse
exhibit an exponential decay of the occupancies for f in
the range 5×104–5×105 (details in the Supplemental Ma-
terial). It can be seen in Fig. 3b that τ−1 varies linearly
with f , which facilitates a reliable extrapolation. This
linear relationship between the decay rate and the ac-
celeration factor can be formally derived for a two-level
system (see Supplemental Material), suggesting that it is
not an accident linked to this particular case, but arises
from the structure of the coupling term and holds in gen-
eral. The resulting lifetime of 1.97 ns is consistent with
the experimental values, reported in the range 1.77 – 2.5
ns [51].

The same procedure was applied to the Be isoelectronic
species B+ and C2+. This isoelectronic series has been
thoroughly characterized in the literature, both from the-
ory and experiments, and at the same time its excita-
tions are well described by TDDFT. These circumstances
make these species an appropriate set for benchmarking.
The extrapolated lifetimes for B+ and C2+ (Fig. 3b) are
0.831 and 0.558 ns respectively, in impressive agreement
with the available data from beam-foil spectroscopy, of
0.86±0.07 and 0.57±0.02 ns [52, 53].

Excitation energies from linear-response TDDFT for
these systems exhibit errors in the order of 5% (see
Supplemental Material). In light of this, the accord
between simulations and experiments—matching or ex-
celling the one obtained through much more costly multi-
configurational quantum chemistry methods—may seem
surprising and even puzzling. We conjecture that the
reason behind this accuracy is that the decay process is
determined by the acceleration of the dipole, and not by
the dipole itself. Whereas TDDFT may fail to reproduce
the exact magnitude of the dipole moment—in the same
way that it may not get the right position of a spectral
signal but can reasonably predict its shift upon a change
in the environment [3]— it is seemingly good enough to
describe the dipole variations, which dominate the relax-
ation dynamics. However, the dynamical description will
be subject to the electronic structure method: the qual-
ity of the simulations will be conditioned by the ability of
the Hamiltonian to reproduce the electronic excitations.
Final remarks.— We develop a formalism for coher-

ent radiative electron dynamics which quantitatively cap-
tures the physics of spontaneous emission with no pa-
rameters. Even so, in this framework emission is not
truly spontaneous since pure eigenstates remain station-
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FIG. 3: Results from first-principles TDDFT simulations for
the deexcitation of the 2s2p state in Be, B+ and C2+, in re-
sponse to an applied field. (a) Electronic energy (relative to
the ground state) as a function of time for Be with different
accelerations factors f , see equation 17. The corresponding
logarithmic plots are portrayed in the inset. (b) Inverse life-
time as a function of the acceleration factor f for Be, B+

and C2+. The dashed lines correspond to the linear fits. The
inset shows the y-axis intercept for f = 1, which inverse cor-
responds to τ .

ary, and some perturbation is needed to trigger the pro-
cess. This is inherent to the underlaying semiclassi-
cal model grounded in the Larmor equation. Alterna-
tively, in defining the Rayleigh dissipation function, each
particle could be envisioned as an independent emit-
ter. Then equation 3 would become µ0

6πc

∑
i[µ̈i(t)]

2 =
2F . This might be interesting for certain open-shell
systems where, as observed in preliminary tests, the
dipoles of two electrons can cancel, quenching the dy-
namics. It could also be useful in the case of two
separate charge distributions—for example, two excited
molecules—whose radiation will be represented as orig-
inating from a single average dipole. Such a scheme,
plus the inclusion of quantum-mechanical spontaneous
emission—for example via stochastic fluctuations—will
be the subject of future investigations.

This is a powerful and efficient formulation that can
be adapted to any Hamiltonian and which has permit-
ted us to realize—to the best of our knowledge for the

first time—realistic simulations of fluorescence. Its suc-
cess underscores that the electromagnetic energy dissi-
pation from excited electrons can indeed be described
for most purposes as dipolar classical radiation. Beyond
situations involving strong photon-electron coupling, the
validity of our formalism is connected with that of the
Larmor formula, which describes radiation from an ar-
bitrary charge distribution. Assumptions of the Larmor
formula are quite general [44], implying that our model
will perform properly in situations from weak to moder-
ate light-matter interaction, which include most applica-
tions of interest in the molecular and materials sciences
(the limitations of this approach are discussed in the Sup-
plemental Material). Thus, this formalism widens the
scope of first-principles time-dependent quantum simu-
lations, opening the door to the real-time modeling of a
diversity of photophysical processes inaccessible to cur-
rent approaches, from resonance energy transfer to time-
resolved spectroscopy and photoluminescence.
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