

Additional Information	NOTICE: This is the author's version of a work that was accepted for publication in Organic Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Organic Chemistry, Vol. 58, May 2013 DOI: http://dx.doi.org/10.1016/j.orggeochem.2013.03.003
---------------------------	---

Accepted Manuscript

Note

Rapid offline isotopic characterisation of hydrocarbon gases generated by micro scale sealed vessel pyrolysis

Mojgan Ladjavardi, Lyndon J. Berwick, Kliti Grice, Chris J. Boreham, Brian Horsfield

 PII:
 \$0146-6380(13)00054-5

 DOI:
 http://dx.doi.org/10.1016/j.orggeochem.2013.03.003

 Reference:
 OG 2932

To appear in: Organic Geochemistry

Received Date:21 December 2012Revised Date:7 March 2013Accepted Date:7 March 2013

Please cite this article as: Ladjavardi, M., Berwick, L.J., Grice, K., Boreham, C.J., Horsfield, B., Rapid offline isotopic characterisation of hydrocarbon gases generated by micro scale sealed vessel pyrolysis, *Organic Geochemistry* (2013), doi: http://dx.doi.org/10.1016/j.orggeochem.2013.03.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Rapid offline isotopic characterisation of hydrocarbon gases generated by
2	micro scale sealed vessel pyrolysis
3	Mojgan Ladjavardi ¹ , Lyndon J. Berwick ¹ , Kliti Grice ^{1*} , Chris J. Boreham ² , Brian
4	Horsfield ³
5	¹ Western Australia Organic and Isotope Geochemistry Centre, The Institute for
6	Geoscience Research, Department of Chemistry, Curtin University, GPO Box U1987
7	Perth, WA 6845, Australia
8	² Geoscience Australia, GPO Box 378 Canberra ACT 261 Australia
9	³ Helmholtz-Centre Potsdam GFZ German Research Centre for Geosciences, Organic
10	Geochemistry, Telegrafenberg, D-14473 Potsdam
11	*Corresponding author: K. Grice (email: K.Grice@curtin.edu.au)
12	
13	Abstract
14	The method of offline coupling of micro scale sealed vessel pyrolysis (MSSV-Py) and
15	gas chromatography-isotopic ratio mass spectrometry (GC-IRMS) was developed using
16	a purpose built gas sampling device. The sampling device allows multiple GC and GC-
17	IRMS injections to quantify the molecular composition and isotopic evolution of
18	hydrocarbon gases (n -C ₁ to n -C ₅) generated by artificial maturation of sedimentary
19	organic matter. Individual MSSV tubes were introduced into the gas sampling device,
20	which was then evacuated to remove air and filled with helium at atmospheric pressure.
21	The tube was crushed using a plunger after which the device was heated at 120 $^{\circ}$ C for 1
22	min to thermally mobilize and equilibrate the generated gas products. Aliquots of the
23	gas phase were sampled using a gas tight syringe and analysed via GC-FID and GC-
24	IRMS. Hydrocarbon gas yields using this technique have been calculated and compared

25	with those obtained previously by online MSSV pyrolysis of the same samples under
26	the same conditions. The major objective of this study was to investigate the potential
27	isotopic fractionation of generated gaseous hydrocarbons within the gas sampling
28	device as a function of time and temperature. For this purpose several tests using a
29	standard gas mixture have been performed on the GC-IRMS. The analyses showed no
30	isotopic fractionation of C_{1-5} hydrocarbons within 1 hour, minor $\delta^{13}C$ enrichment after 5
31	hours, and significant enrichment after 22 hours for all the compounds at a temperature
32	of 120 °C.
33	
34	Keywords
35	micro scale sealed vessel pyrolysis, artificial maturation, stable isotopes, δ^{13} C, methane,
36	hydrocarbon gas, isotopic fractionation
37	
38	1. Introduction
39	The formation of petroleum (oil and gas) cannot be extrapolated from
40	geochemical data derived from naturally occurring basins (Michels et al., 2002). In
41	order to overcome the limitations of natural samples, artificial maturation experiments
42	using analytical pyrolysis techniques have been employed to simulate the formation of
43	gases (Michels et al., 2002; Dieckmann et al., 2006). The study of δ^{13} C of the
44	hydrocarbon (HC) gases, particularly when combined with compositional data, is of
45	great importance to evaluate natural gas resources (Boreham et al., 1998). A range of
46	analytical pyrolysis techniques, coupled with online or offline gas chromatography-
47	mass spectrometry (GC-MS), have been used to characterise organic macromolecules
48	and simulate geochemical reactions over laboratory timescales. Micro scale sealed

49	vessel pyrolysis (MSSV-Py) involves heating small quantities of sample (typically 0.1-
50	10 mg) enclosed within glass tubes under controlled temperature (e.g. 250–350 $^{\circ}$ C) and
51	time (e.g. hours to days) conditions (Horsfield et al., 1989). However, this approach
52	does not allow replicate analyses from a single run of a sample required to obtain
53	reliable quantitative and stable isotopic compositions. Here we report the development
54	of offline MSSV-Py that enables multiple injections on GC and GC-IRMS in order to
55	measure the molecular composition and stable isotopic values of HC gases (C_1 – C_5)
56	generated by artificial maturation of sedimentary organic matter.
57	
58	2. Experimental
59	2.1. Kerogen sample
60	Kerogen was isolated from Hovea-3 well core from the basal Kockatea Shale,
61	Perth Basin Western Australia at 978.3–978.4 m, which is a representative of the
62	Sapropelic Interval, Hovea Member. The uppermost Permian interval of the Hovea
63	Member consists of inertinitic kerogen (Intertinitic Interval) whereas the Lower Triassic
64	Sapropelic Interval contains Type II algal-rich kerogen (Thomas and Barber, 2004;
65	Thomas et al., 2004; Grice et al., 2005, 2007). The sampled kerogen contained 61%
66	total organic carbon (TOC) and yielded Rock-Eval Hydrogen Index (624 mg/g TOC),
67	Oxygen Index (22 mg/g TOC) and a T_{max} at 428 °C.
68	
69	2.2. MSSV-Py
70	Artificial maturation experiments were performed using the principles of MSSV-
71	Py (Horsfield et al., 1989). Aliquots of kerogen (0.87 and 2.75 mg) were loaded into

72 MSSV glass capillary tubes (5 cm x 5 mm i.d.), the void volume was filled with

73	thermally pre-cleaned (400 °C overnight) glass beads (60-80 mesh) and the tubes were
74	flame sealed. The MSSV tubes were heated in an Al block at 300 °C. The temperature
75	was increased at 0.7 °C/min and the tubes were removed from the heating block at 389
76	°C and 415 °C, representing kerogen transformation ratios (TR) of 0.3 and 0.7,
77	respectively (Horsfield and di Primio, 2010). The method developed (see below) was
78	then applied to determine the gas yields of the artificially matured Kockatea shale
79	samples for comparison with previously published results from the same samples and
80	under the same conditions using online MSSV-Py (Horsfield and di Primio, 2010).
81	
82	2.3. Offline gas sampling
83	The apparatus and procedure for offline sampling of the generated HC gases is
84	shown in Fig. 1. The individual MSSV tubes were placed between the side port and
85	main chamber of the gas sampler. The device was evacuated for 5 minutes by
86	connecting the side port of the sampler to a vacuum line using a custom Swagelok
87	fitting. The device was then filled with helium at atmospheric pressure after which the
88	MSSV tube was crushed by winding down the threaded glass stopcock. The main
89	chamber of the sampling device containing the crushed sample was heated to 120 °C by
90	inserting through a vacant injector port of a Hewlett Packard 5890 GC oven. After
91	cooling to ambient temperature the gaseous products released were sampled using a gas-
92	tight syringe and analysed by GC and GC-IRMS.
93	
94	2.4. GC and GC-IRMS analyses
95	GC analysis of n -C ₁ to n -C ₅ HC gases was performed using a Hewlett Packard

96 5890 gas chromatograph equipped with a HP-PlotQ column (30 m x 0.32 mm i.d.; film

97 thickness 20 µm). Helium carrier gas was used at a constant pressure of 16 psi and a 98 split ratio of 20:1. The GC oven temperature was held at 200 °C to achieve optimum 99 separation of gases and the flame ionisation detector at 250 °C. A gas standard 100 consisting of C_{1-5} hydrocarbons (Table 1) was used to confirm baseline resolution of the 101 individual components and to check linearity, reproducibility and detection limits for 102 GC analysis. Calibration curves for quantitation of individual compounds were 103 developed by performing multiple injections of different volumes of the gas standard from gas sampling bags filled at known pressure (1 atm). Peak areas were plotted as a 104 105 function of the number of moles of each component, calculated from the ideal gas law (PV = nRT); where P is the partial pressure of the gas, V is the volume of gas injected, 106 107 and T is the laboratory temperature (22 °C). The calibration was repeated every 3 days to ensure stability and reproducibility. The yields (µg/g sample) of generated HC gases 108 109 from the Kockatea shale kerogen were calculated by injecting a 200 µl aliquot from the 110 gas sampling device (total volume 1.6 ml) at known internal pressure (1 atm). 111 The carbon isotope analysis of the generated gases was performed using a 112 Micromass IsoPrime isotope ratio monitoring-mass spectrometer (irm-MS) interfaced to 113 a Hewlett Packard HP 6890 gas chromatograph (GC) with a GS-Carbon plot column 114 (30 m x 0.32 mm i.d x 3 µm film thickness). The GC oven was initially held at 70 °C for 115 1 min, heated at rate of 20 °C/min to 250 °C, and held for 5 min. Helium was used as 116 carrier gas. Analyses were performed using two different sized gas loops (250 µl and 117 500 µl) with a split ratio of 20:1. Stable carbon isotopic compositions are expressed in 118 ‰ (parts per thousand) relative to the international carbon isotope reference material 119 Vienna Pee Dee Belemnite (VPDB).

120

121 **3. Results and discussion**

122 *3.1. Gas composition and yield*

123 The procedure was applied to Kockatea shale kerogen samples, artificially 124 matured to transformation ratios (TR) of 0.3 and 0.7, to confirm reproducibility and 125 compare the HC gas yields using the offline technique with those obtained previously 126 by online MSSV pyrolysis (Horsfield and di Primio, 2010). Excellent reproducibility 127 was observed for duplicate offline pyrolysis experiments (Table 2). HC gas yield increased with temperature due to increased conversion of kerogen to volatile products. 128 129 However, it is evident that the gas yields from the offline injection method are between 130 1.6–4.8 times lower than those obtained by online MSSV-Py. This is most likely related 131 to the different injection conditions employed for each method. Online MSSV-Py 132 involves crushing the sample tube directly inside a heated injector system (typically 300 °C) under a constant flow of helium. In contrast, the offline approach involves heating 133 the crushed sample to 120 °C to mobilise and equilibrate the gaseous components within 134 135 the sampling device prior to GC analysis. Adsorption of gas products to the exposed 136 pyrolysed kerogen residue may explain the lower yields. However, no significant 137 differences in gas yields were observed by adding a known amount of the standard gas 138 mixture to the device with and without kerogen residue. In addition, heating the main 139 chamber of the sampling device to higher temperatures (350 °C) after crushing duplicate 140 MSSV pyrolysed kerogen samples also showed no significant difference in gas 141 distribution and yields at the higher temperature, indicating minimal, if any, adsorption 142 to the kerogen residue. We therefore attribute the lower gas yields compared with the 143 previous online study not to thermal transfer effects but to the absence of He carrier gas 144 flushing within the offline system.

3.2. $\delta^{I3}C$ of gaseous hydrocarbons 145

146	The gas sampling device was filled with the standard gas mixture at atmospheric
147	pressure to investigate the potential for isotopic fractionation due to temperature and
148	time. Table 1 shows that no significant isotopic fractionation was observed for any C_{1-5}
149	hydrocarbons as a result of the mild heating (120 °C) used to mobilise/equilibrate the
150	gaseous products within the device. Fig. 2 shows changes in $\delta^{13}C$ values for $C_{1\!-\!4}$
151	hydrocarbons over a 23 h period using 250 μl and 500 μl gas loops. $\delta^{13}C$ values showed
152	no isotopic fractionation within 1 hour and only minor fractionation to more enriched
153	values within 5 hours. However, significant fractionation was observed after 22 h. The
154	δ^{13} C values for all the compounds become heavier over time, most likely due to
155	preferential loss of the isotopically lighter components from the system through the
156	punctured septa of the gas sampling device. It is recommended that the generated gas
157	hydrocarbons should be sampled within 1 hour to avoid isotopic alteration.
158	

159 4. Conclusions

An offline sampling technique coupled to GC and GC-IRMS was developed in 160 order to determine the gas yields and δ^{13} C values of hydrocarbons (C₁₋₅) generated from 161 162 MSSV-Py artificial maturation of kerogen from the Kockatea Shale (Perth Basin, WA). 163 The HC gas yields using this offline approach were slightly lower than previous results 164 for the same sample using online MSSV-Py, most likely due to the absence of He 165 carrier gas flushing within the offline system. GC-IRMS results showed no significant isotopic fractionation of HC gases within 1 hour of crushing the MSSV sample, nor due 166 167 to the mild heating used to mobilise the gaseous components within the sampling 168 device. This offline sampling technique is rapid and inexpensive, enabling multiple

169	isotopic analyses of gases generated by laboratory maturation. The approach has great
170	scope for characterising gas formation in sedimentary systems.
171	
172	Acknowledgements
173	The authors thank Geoff Chidlow and Stephen Clayton for GC-FID and GC-IRMS
174	technical support. Mojgan Ladjavardi thanks Curtin University, Geoscience Australia
175	and GFZ Germany for an International Postgraduate Award scholarship and Australia-
176	China LNG project for a PhD top-up scholarship. KG acknowledges ARC for QEII
177	Fellowship and John de Laeter Centre for ARC LIEFP support.
178	
179	Associate Editor – Cliff Walters
180	
181	References
182	Boreham, C.J., Golding, S.D., Glikson, M., 1998. Factors controlling the origin of gas
183	in Australia Bowen Basin coals. Organic Geochemistry 29, 347-362.
184	Dieckmann, V., Ondrak, R., Cramer, B., Horsfield, B., 2006. Deep basin gas; New
185	insights from kinetic modelling and isotopic fraction in deep-formed gas
186	precursors. Marine and Petroleum Geology 23, 183–199.
187	Grice, K., Cao, C., Love, G.D., Bottcher, M.E., Twitchett, R., Grosjean, E., Summons,
188	R.E., Turgeon, S., Dunning, W.J., Jin, Y., 2005. Photic zone euxinia during the
189	Permian-Triassic superanoxic event. Science 307,706-709.
190	Grice, K., Nabbefeld, B., Maslen, E., 2007. Source and significance of selected
191	polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin,
192	Western Australia) spanning the Permian-Triassic boundary. Organic
193	Geochemistry 38, 1795-1803.
194	Horsfield, B., Disko, U., Leistner, F., 1989. The micro-scale simulation of maturation:
195	Outline of a new technique and its potential application. Geologische Rundschau
196	78, 361–374.

197	Horsfield, B., di Primio, R., 2010. Oil and gas generation characteristics of a kerogen
198	concentrate and an oil asphaltene as inferred from Phase Kinetic analysis. GeoS4
199	Report 20100703.

- 200 Michels, R., Raoult, N.E., Elie, M., Mansuay, L., Faure, P., Oudin, J.L., 2002.
- 201 Understanding of reservoir gas compositions in a natural case using stepwise
 202 semi-open artificial maturation. Marine and Petroleum Geology 19, 589–599.
- 203 Thomas, B.M., Barber, C.J., 2004. A re-evaluation of the hydrocarbon habitat of the
- 204 northern Perth basin. Australian Petroleum Production and Exploration
 205 Association Journal 44, 59–92.
- 206 Thomas, B.M., Willink, R.J., Grice, K., Twitchett, R.J., Purcell, R.R., Archbold, N.W.,
- 207 George, A.D., Tye, S., Alexander, R., Foster, C.B., Barber, C.J., 2004. Unique
- 208 marine Permian/Triassic boundary section from Western Australia. Australian
- 209 Journal of Earth Sciences 51, 423-430.
- 210

211 Tables

- Table 1. Composition and carbon isotopic values of the standard gas mixture and
- stable carbon isotope measurements of the gases within the sampling device at ambient
- 214 temperature (22 °C) and after heating to 120 °C. Numbers in parentheses are standard
- 215 deviations; superscript indicates the number of replicate analyses.
- 216

Component	Mole Fraction (%)	δ ¹³ C (‰)	22 °C	120 °C
Methane	75.9	-46	$-45.6 [0.11]^2$	$-45.6 [0.08]^2$
Ethane	9.14	-31.3	$-30.9 [0.07]^2$	$-30.9 [0.09]^2$
Propane	5.87	-35.1	$-35.2 [0.16]^2$	$-35.2 [0.18]^2$
iso-Butane	2.97	-29.3	$-30.0 [0.21]^2$	$-30.0 [0.15]^2$
<i>n</i> -Butane	3.01	-25.2	$-25.3 [0.19]^2$	$-25.3 [0.22]^2$
iso-Pentane	1.07	-27.1	$-23.6[0.31]^2$	$-23.7 [0.26]^2$
<i>n</i> -Pentane	1.05	-23.8		
CO_2	0.989	-8.2		

217

218

- Table 2. Comparison of gas yields ($\mu g/g$) from Kockatea shale kerogen at two different
- transformation ratios (0.3 and 0.7) using offline (this study) and online (Horsfield and di
- Primio, 2010) GC analysis. Duplicate values for the new offline technique are provided.

	Component	Offline	Online	Offline	Online	_
	Methane	1471, 1423	2569	3868, 3978	6334	-
	Ethane	850, 818	1968	2422, 2462	5881	
	Propane	916, 908	2123	2750, 2806	5837	
	iso-Butane	242, 220	617	718, 786	1432	
	<i>n</i> -Butane	424, 406	1462	1862, 1896	4222	0
	iso-Pentane	174, 160	797	616, 644	1777	
	<i>n</i> -Pentane	244, 214	915	1743, 1761	2977	2
223 224 225 226 227 228 229	Figures Fig. 1. Schemat evacuation (b) S	ic representation Sample crushing	n of gas samp and gas ana	bling device; (a) lysis.	Sample load	ing and
230 231	Stope	cock		2		
232						
233		[]	•			
234		╗┝═┥┍┚		┝╞╡┟		
235	O-rings	Side-ar	.m			Gas tight syringe
236 Sam 237	ple in MSSV tube _]	
238	Main chamber —		Swagelok	\ _	Crushed sample	Analysis by GC-FII & GC-IRMS
239						

- Fig. 2. Stable carbon isotope measurements of HC gases over time using (a) 500 µl and 240 (b) 250 µl gas loops.
- 241

