193 research outputs found

    Proposal for a clinic based model of physical therapist consultation in a geriatric outpatient clinic

    Get PDF
    Purpose: The purpose of this article is to describe the role of a certified geriatric physical therapist (PT) in a geriatric outpatient clinic. Methods: This pilot study used a model in which a geriatric certified doctor of physical therapy (DPT) provided consultations one afternoon a week for patients in the Outpatient Geriatric Clinic at the Louis Stokes Cleveland Veterans Affairs Medical Center (VAMC). Data collection included reason for referral, DPT’s interventions, and clinicians’ and patients’ perceptions. Results: Over 7 months, the DPT consulted on 25 male patients ranging from 65 to 91 years, with a mean age of 80. The majority of patients were classified into the neuromuscular category (64%) and received a home exercise program (60%). The addition of the PT consult service in the Geriatric Outpatient Clinic was well received by the multidisciplinary team. Conclusion: In addition to their traditional roles, physical therapists now have an opportunity to engage directly in primary care. The model described serves as an example of autonomous practice and the net result is increased quality of care, improved patient satisfaction, and increased knowledge about the profession of physical therapy on behalf of the referring clinician. The findings from this study provide support for the use of this model in settings other than the VAMC’s managed care setting

    Tektin 2 is required for central spindle microtubule organization and the completion of cytokinesis

    Get PDF
    During anaphase, the nonkinetochore microtubules in the spindle midzone become compacted into the central spindle, a structure which is required to both initiate and complete cytokinesis. We show that Tektin 2 (Tek2) associates with the spindle poles throughout mitosis, organizes the spindle midzone microtubules during anaphase, and assembles into the midbody matrix surrounding the compacted midzone microtubules during cytokinesis. Tek2 small interfering RNA (siRNA) disrupts central spindle organization and proper localization of MKLP1, PRC1, and Aurora B to the midzone and prevents the formation of a midbody matrix. Video microscopy revealed that loss of Tek2 results in binucleate cell formation by aberrant fusion of daughter cells after cytokinesis. Although a myosin II inhibitor, blebbistatin, prevents actin-myosin contractility, the microtubules of the central spindle are compacted. Strikingly, Tek2 siRNA abolishes this actin-myosin–independent midzone microtubule compaction. Thus, Tek2-dependent organization of the central spindle during anaphase is essential for proper midbody formation and the segregation of daughter cells after cytokinesis

    Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions

    Get PDF
    The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.Peer reviewe

    Ocean Acidification Experiments in Large-Scale Mesocosms Reveal Similar Dynamics of Dissolved Organic Matter Production and Biotransformation

    Get PDF
    Dissolved organic matter (DOM) represents a major reservoir of carbon in the oceans. Environmental stressors such as ocean acidification (OA) potentially affect DOM production and degradation processes, e.g., phytoplankton exudation or microbial uptake and biotransformation of molecules. Resulting changes in carbon storage capacity of the ocean, thus, may cause feedbacks on the global carbon cycle. Previous experiments studying OA effects on the DOM pool under natural conditions, however, were mostly conducted in temperate and coastal eutrophic areas. Here, we report on OA effects on the existing and newly produced DOM pool during an experiment in the subtropical North Atlantic Ocean at the Canary Islands during an (1) oligotrophic phase and (2) after simulated deep water upwelling. The last is a frequently occurring event in this region controlling nutrient and phytoplankton dynamics. We manipulated nine large-scale mesocosms with a gradient of pCO2 ranging from ~350 up to ~1,030 μatm and monitored the DOM molecular composition using ultrahigh-resolution mass spectrometry via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). An increase of 37 μmol L−1 DOC was observed in all mesocosms during a phytoplankton bloom induced by simulated upwelling. Indications for enhanced DOC accumulation under elevated CO2 became apparent during a phase of nutrient recycling toward the end of the experiment. The production of DOM was reflected in changes of the molecular DOM composition. Out of the 7,212 molecular formulae, which were detected throughout the experiment, ~50% correlated significantly in mass spectrometric signal intensity with cumulative bacterial protein production (BPP) and are likely a product of microbial transformation. However, no differences in the produced compounds were found with respect to CO2 levels. Comparing the results of this experiment with a comparable OA experiment in the Swedish Gullmar Fjord, reveals similar succession patterns for individual compound pools during a phytoplankton bloom and subsequent accumulation of these compounds were observed. The similar behavior of DOM production and biotransformation during and following a phytoplankton bloom irrespective of plankton community composition and CO2 treatment provides novel insights into general dynamics of the marine DOM pool

    Effects of CO2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea

    Get PDF
    Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in many aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. The phosphorus dynamic was followed in a CO2-manipulation mesocosm experiment in the Storfjarden (western Gulf of Finland, Baltic Sea) in summer 2012 and was also studied in the surrounding fjord water. In all mesocosms as well as in surface waters of Storfjarden, dissolved organic phosphorus (DOP) concentrations of 0.26aEuro-+/- aEuro-0.03 and 0.23aEuro-+/- aEuro-0.04aEuro-A mu molaEuro-L-1, respectively, formed the main fraction of the total P-pool (TP), whereas phosphate (PO4) constituted the lowest fraction with mean concentration of 0.15aEuro-A +/- aEuro-0.02 in the mesocosms and 0.17aEuro-A +/- aEuro-0.07aEuro-A mu molaEuro-L-1 in the fjord. Transformation of PO4 into DOP appeared to be the main pathway of PO4 turnover. About 82aEuro-% of PO4 was converted into DOP whereby only 18aEuro-% of PO4 was transformed into particulate phosphorus (PP). PO4 uptake rates measured in the mesocosms ranged between 0.6 and 3.9aEuro-nmolaEuro-L(-1)aEuro-h(-1). About 86aEuro-% of them was realized by the size fraction aEuro-1000aEuro-A mu atm during periods when phytoplankton biomass increased. In addition, we found significant relationships (e.g., between PP and Chl a) in the untreated mesocosms which were not observed under high fCO(2) conditions. Consequently, it can be hypothesized that the relationship between PP formation and phytoplankton growth changed with CO2 elevation. It can be deduced from the results, that visible effects of CO2 on P pools are coupled to phytoplankton growth when the transformation of PO4 into POP was stimulated. The transformation of PO4 into DOP on the other hand does not seem to be affected. Additionally, there were some indications that cellular mechanisms of P regulation might be modified under CO2 elevation changing the relationship between cellular constituents.Peer reviewe

    Control of Invasive Salmonella Disease in Africa: Is There a Role for Human Challenge Models?

    Get PDF
    Invasive Salmonella disease in Africa is a major public health concern. With evidence of the transcontinental spread of the Salmonella Typhi H58 haplotype, improved estimates of the burden of infection and understanding of the complex interplay of factors affecting disease transmission are needed to assist with efforts aimed at disease control. In addition to Salmonella Typhi, invasive nontyphoidal Salmonella are increasingly recognized as an important cause of febrile illness and mortality in sub-Saharan Africa. Human experimental oral challenge studies with Salmonella can be used as a model to offer unique insights into host-pathogen interactions as well as a platform to efficiently test new diagnostic and vaccine candidates. In this article, we review the background and use of human challenge studies to date and discuss how findings from these studies may lead to progress in the control of invasive Salmonella disease in Africa
    corecore