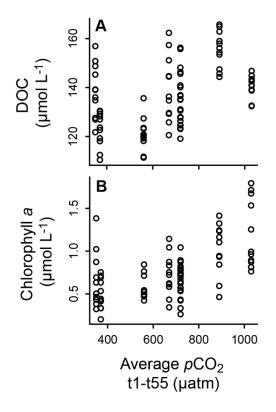
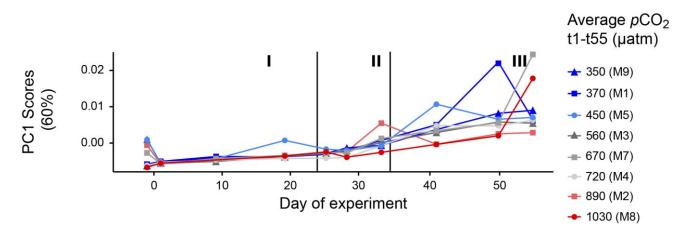


Supplementary Material

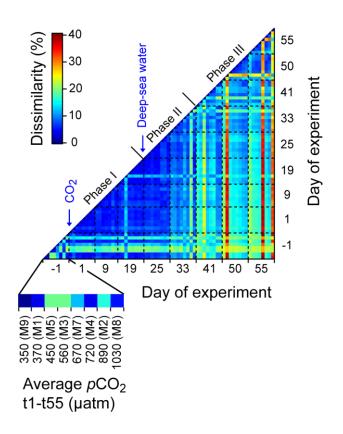
Ocean Acidification Experiments in Large-Scale Mesocosms Reveal Similar Dynamics of Dissolved Organic Matter Production and Biotransformation


Maren Zark^{1*}, Nadine K. Broda¹, Thomas Hornick², Hans-Peter Grossart^{2,3}, Ulf Riebesell⁴, Thorsten Dittmar¹

* Correspondence: Dr. Maren Zark: maren.zark@uol.de


Supplementary Figure 1

Supplementary Figure 2


Supplementary Figure 3

Supplementary Figure 1. Carbon dioxide concentrations as driver for trends in bulk data during phase III. (A) DOC and (B) chlorophyll *a* plotted for increasing average pCO_2 values of experiment days 35-55 (post-bloom).

Supplementary Figure 2. Time series of molecular DOM composition inside the mesocosms. Results from the PCA (PC1) of 7212 molecular formulae and their MS signal intensities.

Supplementary Figure 3. Molecular dissimilarity between mesocosms. For dissimilarity analysis, the 5,205 most intense molecular formulae from each sample were considered. The dissimilarity on a Bray-Cutis level may reach values between 0 (the two mesocosms share all molecular formulae in similar abundances) and 1 (the mesocosms share no molecular formulae), which were transferred to percentages (from 0 to 100% dissimilarity). The color scale was cut at 40% dissimilarity level as no mesocosms showed higher dissimilarity in DOM composition. Samples were first ordered by average pCO_2 values from day 1 to day 55 and second by the respective day of the experiment.