71 research outputs found

    Forecasting GOES 15 >2 MeV electron fluxes from solar wind data and geomagnetic indices

    Get PDF
    The flux of > 2 MeV electrons at geosynchronous orbit is used by space weather forecasters as a key indicator of enhanced risk of damage to spacecraft in low, medium or geosynchronous Earth orbits. We present a methodology that uses the amount of time a single input dataset (solar wind data or geomagnetic indices) exceeds a given threshold to produce deterministic and probabilistic forecasts of the > 2 MeV flux at GEO exceeding 1000 or 10000 cm‐2 s‐1 sr‐1 within up to 10 days. By comparing our forecasts with measured fluxes from GOES 15 between 2014 and 2016, we determine the optimum forecast thresholds for deterministic and probabilistic forecasts by maximising the ROC and Brier Skill Scores respectively. The training dataset gives peak ROC scores of 0.71 to 0.87 and peak Brier Skill Scores of ‐0.03 to 0.32. Forecasts from AL give the highest skill scores for forecasts of up to 6‐days. AL, solar wind pressure or SYM‐H give the highest skill scores over 7‐10 days. Hit rates range over 56‐89% with false alarm rates of 11‐53%. Applied to 2012, 2013 and 2017, our best forecasts have hit rates of 56‐83% and false alarm rates of 10‐20%. Further tuning of the forecasts may improve these. Our hit rates are comparable to those from operational fluence forecasts, that incorporate fluence measurements, but our false alarm rates are higher. This proof‐of‐concept shows that the geosynchronous electron flux can be forecast with a degree of success without incorporating a persistence element into the forecasts

    Elevated serum ceruloplasmin levels are associated with higher impulsivity in people with Parkinson’s Disease

    Get PDF
    Background. Heightened impulsivity has been reported in a subset of people with Parkinson’s disease (PwP) and is considered a risk factor for the development of impulse control disorders (ICDs). However, at present, there are no recognised biochemical markers of heightened impulsivity. Objectives. To determine if ceruloplasmin, a serum marker involved in the regulation of iron and copper homeostasis, is associated with trait impulsivity in PwP. Methods. The study measured serum ceruloplasmin and impulsivity using the Barratt Impulsiveness Scale (BIS-11) in an Australian cohort of 214 PwP. Multivariate general linear models (GLMs) were used to identify whether higher serum ceruloplasmin levels (>75th percentile) were significantly predictive of BIS-11 scores. Results. Serum ceruloplasmin was higher in females with PD (p<0.001) and associated with MDS-UPDRS III, Hoehn and Yahr, and ACE-R scores (p<0.05). When correcting for covariates, higher serum ceruloplasmin concentrations were associated with the 2nd order nonplanning impulsivity and with the 1st order self-control and cognitive complexity impulsivity domains. Conclusions. Higher serum ceruloplasmin levels are independently associated with heightened nonplanning impulsivity in PwP. Thus, serum ceruloplasmin levels may have clinical utility as a marker for heightened impulsivity in PD

    Magnetic conjugacy of Pc1 waves and isolated proton precipitation at subauroral latitudes: Importance of ionosphere as intensity modulation region

    Get PDF
    Pc1 geomagnetic pulsations, equivalent to electromagnetic ion cyclotron waves in the magnetosphere, display a specific amplitude modulation, though the region of the modulation remains an open issue. To classify whether the amplitude modulation has a magnetospheric or ionospheric origin, an isolated proton aurora (IPA), which is a proxy of Pc1 wave–particle interactions, is compared with the associated Pc1 waves for a geomagnetic conjugate pair, Halley Research Base in Antarctica and Nain in Canada. The temporal variation of an IPA shows a higher correlation coefficient (0.88) with Pc1 waves in the same hemisphere than that in the opposite hemisphere. This conjugate observation reveals that the classic cyclotron resonance is insufficient to determine the amplitude modulation. We suggest that direct wave radiation from the ionospheric current by IPA should also contribute to the amplitude modulation

    A connectome of the adult drosophila central brain

    Get PDF
    The neural circuits responsible for behavior remain largely unknown. Previous efforts have reconstructed the complete circuits of small animals, with hundreds of neurons, and selected circuits for larger animals. Here we (the FlyEM project at Janelia and collaborators at Google) summarize new methods and present the complete circuitry of a large fraction of the brain of a much more complex animal, the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses, and proofread such large data sets; new methods that define cell types based on connectivity in addition to morphology; and new methods to simplify access to a large and evolving data set. From the resulting data we derive a better definition of computational compartments and their connections; an exhaustive atlas of cell examples and types, many of them novel; detailed circuits for most of the central brain; and exploration of the statistics and structure of different brain compartments, and the brain as a whole. We make the data public, with a web site and resources specifically designed to make it easy to explore, for all levels of expertise from the expert to the merely curious. The public availability of these data, and the simplified means to access it, dramatically reduces the effort needed to answer typical circuit questions, such as the identity of upstream and downstream neural partners, the circuitry of brain regions, and to link the neurons defined by our analysis with genetic reagents that can be used to study their functions. Note: In the next few weeks, we will release a series of papers with more involved discussions. One paper will detail the hemibrain reconstruction with more extensive analysis and interpretation made possible by this dense connectome. Another paper will explore the central complex, a brain region involved in navigation, motor control, and sleep. A final paper will present insights from the mushroom body, a center of multimodal associative learning in the fly brain

    A connectome and analysis of the adult Drosophila central brain

    Get PDF
    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly’s brain

    Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus

    Get PDF
    The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Perallelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10(-21)). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity PPeer reviewe

    Spitzer Parallax Of Ogle-2015-blg-0966: A Cold Neptune In The Galactic Disk

    Get PDF
    We report the detection of a cold Neptune mplanet = 21 ± 2 M? orbiting a 0.38 M? M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge

    A connectome and analysis of the adult Drosophila central brain

    Get PDF
    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain

    Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

    Get PDF
    K2's Campaign 9 (K2C9) will conduct a ~3.7 deg2 survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax πE{\pi }_{{\rm{E}}} for 170\gtrsim 170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST
    corecore