385 research outputs found
Resistance to thyroid hormone caused by a mutation in thyroid hormone receptor (TR)alpha 1 and TR alpha 2: clinical, biochemical, and genetic analyses of three related patients
Background
The thyroid hormone receptor α gene (THRA) transcript is alternatively spliced to generate either thyroid hormone receptor (TR)α1 or a non-hormone-binding variant protein, TRα2, the function of which is unknown. Here, we describe the first patients identified with a mutation in THRA that affects both TRα1 and TRα2, and compare them with patients who have resistance to thyroid hormone owing to a mutation affecting only TRα1, to delineate the relative roles of TRα1 and TRα2.
Methods
We did clinical, biochemical, and genetic analyses of an index case and her two sons. We assessed physical and radiological features, thyroid function, physiological and biochemical markers of thyroid hormone action, and THRA sequence.
Findings
The patients presented in childhood with growth failure, developmental delay, and constipation, which improved after treatment with thyroxine, despite normal concentrations of circulating thyroid hormones. They had similar clinical (macrocephaly, broad faces, skin tags, motor dyspraxia, slow speech), biochemical (subnormal ratio of free thyroxine:free tri-iodothyronine [T3], low concentration of total reverse T3, high concentration of creatine kinase, mild anaemia), and radiological (thickened calvarium) features to patients with TRα1-mediated resistance to thyroid hormone, although our patients had a heterozygous mis-sense mutation (Ala263Val) in both TRα1 and TRα2 proteins. The Ala263Val mutant TRα1 inhibited the transcriptional function of normal receptor in a dominant-negative fashion. By contrast, function of Ala263Val mutant TRα2 matched its normal counterpart. In vitro, high concentrations of T3 restored transcriptional activity of Ala263Val mutant TRα1, and reversed the dominant-negative inhibition of its normal counterpart. High concentrations of T3 restored expression of thyroid hormone-responsive target genes in patient-derived blood cells.
Interpretation
TRα1 seems to be the principal functional product of the THRA gene. Thyroxine treatment alleviates hormone resistance in patients with mutations affecting this gene, possibly ameliorating the phenotype. These findings will help the diagnosis and treatment of other patients with resistance to thyroid hormone resulting from mutations in THRA.
Funding
Wellcome Trust, NIHR Cambridge Biomedical Research Centre, Marie Curie Actions, Foundation for Development of Internal Medicine in Europe
Glycosaminoglycan and DNA binding induced intra- and intermolecular exciton coupling of the bis-4-aminoquinoline surfen
Despite the diverse biological activities of the glycosaminoglycan (GAG) antagonist surfen, the molecular details of its interaction with biomacromolecules remain poorly understood. Therefore, heparin and DNA binding properties of surfen were studied by circular dichroism (CD) and UV absorption spectroscopy methods. High-affinity (Ka ~ 107 M-1) association of surfen to the chiral heparin chain gives rise to a characteristic biphasic CD pattern due to the conformational twist of the aminoquinoline moieties around the central urea bridge. At higher drug loading, intermolecular stacking of surfen molecules alters the induced CD profile and also provokes strong UV hypochromism. In contrast to the right-handed heparin template, binding of surfen to the left-helicity chondroitin sulfate chains produces inverted CD pattern. Large UV hypochromism as well as polyphasic induced ellipticity bands indicate that surfen intercalates between the base pairs of calf-thymus DNA. Extensive CD spectroscopic changes observed at higher drug binding ratios refer to cooperative binding interactions between the intercalated drug molecules. The inherent conformational flexibility of surfen demonstrated here for the first time is important in its binding to distinct macromolecular targets and should be considered for rational drug design of novel GAG antagonists
All-Optical Steering Of Laser-Wakefield-Accelerated Electron Beams
We investigate the influence of a tilted laser-pulse-intensity front on laser-wakefield acceleration. Such asymmetric light pulses may be exploited to obtain control over the electron-bunch-pointing direction and in our case allowed for reproducible electron-beam steering in an all-optical way within an 8 mrad opening window with respect to the initial laser axis. We also discovered evidence of collective electron-betatron oscillations due to odd-axis electron injection into the wakefield induced by a pulse-front tilt. These findings are supported by 3D particle-in-cell simulations
Generation of Stable, Low-Divergence Electron Beams by Laser-Wakefield Acceleration in a Steady-State-Flow Gas Cell
Laser-driven, quasimonoenergetic electron beams of up to ~200 MeV in energy have been observed from steady-state-flow fas cells. These beams emitted within a low-divergence cone of 2.1 ± 0.5 mrad FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and charge (16% rms) owing to a highly reproducible gas-density profile within the interaction volume. Laser-wakefield acceleration in gas cells of this type provides a simple and reliable source of relativistic electrons suitable for applications such as the production of extreme-ultraviolet undulator radiation
DNA-Induced Unfolding of the Thyroid Hormone Receptor a A/B Domain through Allostery
The A/B domains of nuclear receptors such as thyroid receptor a (TRa) are considered to be conformationally flexible and can potentially adopt multiple structural conformations. We used intrinsic tryptophan fluorescence quenching and circular dichroism spectroscopy to characterize the unfolding of this A/B domain upon DNA binding to the contiguous DNA binding domain (DBD). We propose that this allosteric change in A/B domain conformation can allow it to make the multiple interactions with distinct molecular factors of the transcriptional preinitiation complex. We further suggest that by influencing the affinity of the DBD for DNA, A/B domain can fine-tune the recognition of promotor DNA by TRa
Transcriptional corepressors in cancer
The normal cell transcriptional process entails a high degree of combinatorial effects and time‐dependent “flexibility” to translate cellular signaling into differential gene expression levels. Transcriptional corepressors can function as histone‐modifying enzymes to regulate epigenetic events, modulate chromatin structure, and hence control transcriptional activity. Various corepressor complexes have been described; qualitative and quantitative alterations of corepressors can crucially influence the transcriptional output of both normal and malignant cells. Because these molecules can exert epigenetic control of tumorigenic signaling pathways, they can be considered potential regulators of cancer cell‐related phenomena. Alterations of the expression level and/or function of transcriptional corepressors have been reported in a wide range of human cancers; thus, corepressors may present rational therapeutic targets as well as potential biomarkers of response to selective therapeutic interventions. Deeper insights into the context‐specific and time‐specific physical connections among transcription factors, coregulators, and gene regulatory elements, as well as epigenetic modifications, and their interactions, can enhance the capacity to interfere with small molecules that may restore the normal transcriptome/interactome in a cancer cell. There are several conceivable mechanisms of corepressor targeting in cancer that create enthusiasm. However, design, discovery, and testing of such innovative treatment approaches require extensive elaboration before they can achieve practical implementation in the clinic. Cancer 2013. © 2012 American Cancer Society. Alterations in the structure, expression level, and/or function of transcriptional corepressors have been documented in a broad array of human malignancies. Therefore, corepressors may function as rational therapeutic targets and/or potential biomarkers of response to selective chemotherapy regimens.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96650/1/27908_ftp.pd
Identification of Networks of Co-Occurring, Tumor-Related DNA Copy Number Changes Using a Genome-Wide Scoring Approach
Tumorigenesis is a multi-step process in which normal cells transform into malignant tumors following the accumulation of genetic mutations that enable them to evade the growth control checkpoints that would normally suppress their growth or result in apoptosis. It is therefore important to identify those combinations of mutations that collaborate in cancer development and progression. DNA copy number alterations (CNAs) are one of the ways in which cancer genes are deregulated in tumor cells. We hypothesized that synergistic interactions between cancer genes might be identified by looking for regions of co-occurring gain and/or loss. To this end we developed a scoring framework to separate truly co-occurring aberrations from passenger mutations and dominant single signals present in the data. The resulting regions of high co-occurrence can be investigated for between-region functional interactions. Analysis of high-resolution DNA copy number data from a panel of 95 hematological tumor cell lines correctly identified co-occurring recombinations at the T-cell receptor and immunoglobulin loci in T- and B-cell malignancies, respectively, showing that we can recover truly co-occurring genomic alterations. In addition, our analysis revealed networks of co-occurring genomic losses and gains that are enriched for cancer genes. These networks are also highly enriched for functional relationships between genes. We further examine sub-networks of these networks, core networks, which contain many known cancer genes. The core network for co-occurring DNA losses we find seems to be independent of the canonical cancer genes within the network. Our findings suggest that large-scale, low-intensity copy number alterations may be an important feature of cancer development or maintenance by affecting gene dosage of a large interconnected network of functionally related genes
miR-16 Targets Transcriptional Corepressor SMRT and Modulates NF-kappaB-Regulated Transactivation of Interleukin-8 Gene
The signaling pathways associated with the Toll-like receptors (TLRs) and nuclear factor-kappaB (NF-κB) are essential to pro-inflammatory cytokine and chemokine expression, as well as initiating innate epithelial immune responses. The TLR/NF-κB signaling pathways must be stringently controlled through an intricate network of positive and negative regulatory elements. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the stability and/or translation of protein-coding mRNAs. Herein we report that miR-16 promotes NF-κB-regulated transactivation of the IL-8 gene by suppression of the silencing mediator for retinoid and thyroid hormone receptor (SMRT). LPS stimulation activated miR-16 gene transcription in human monocytes (U937) and biliary epithelial cells (H69) through MAPK-dependent mechanisms. Transfection of cells with the miR-16 precursor promoted LPS-induced production of IL-8, IL-6, and IL-1α, without a significant effect on their RNA stability. Instead, an increase in NF-κB-regulated transactivation of the IL-8 gene was confirmed in cells following transfection of miR-16 precursor. Importantly, miR-16 targeted the 3′-untranslated region of SMRT and caused translational suppression of SMRT. LPS decreased SMRT expression via upregulation of miR-16. Moreover, functional manipulation of SMRT altered NF-κB-regulated transactivation of LPS-induced IL-8 expression. These data suggest that miR-16 targets SMRT and modulates NF-κB-regulated transactivation of the IL-8 gene
Nuclear receptor corepressors
The ability of NR LBDs to transfer repression function to a heterologous DNA binding domain, and the cross-squelching of repression by untethered LBDs, has suggested that repression is mediated by interactions with putative cellular corepressor proteins. The yeast-two hybrid screen for protein interactors has proven to be the key to the isolation and characterization of corepressors. This short review will focus on N-CoR and SMRT
- …