1,383 research outputs found

    Specialized motor-driven dusp1 expression in the song systems of multiple lineages of vocal learning birds.

    Get PDF
    Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits

    Real Hydrostatic Pressure in High-Pressure Torsion Measured by Bismuth Phase Transformations and FEM Simulations

    Get PDF
    Hydrostatic pressure is a significant parameter influencing the evolution of microstructure and phase transformations in the high-pressure torsion (HPT) process. Currently, there are significant arguments relating to the magnitude of the real hydrostatic pressure during the process. In this study, phase transformations in bismuth, copper and titanium combined with the finite element method (FEM) were employed to determine the real pressure in processing disc samples by HPT. Any break in the variation of steady-state hardness (monitored experimentally by in-situ torque and temperature rise measurements) versus pressure was considered as a phase transition. FEM simulations show that the hydrostatic pressure is reasonably isotropic but decreases with increasing distance from the disc center and remains unchanged across the disc thickness. Both experiments and simulations indicate that the mean hydrostatic pressure during HPT processing closely corresponds to the compressive load over the disc area plus the contact area between the anvils.1166Ysciescopu

    Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel

    Full text link
    The combined strengthening effects of grain refinement and high precipitated volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected to SPD processing prior to aging treatment were investigated by atom probe tomography and scanning transmission electron microscopy. It was shown that the refinement of the microstructure affects the precipitation kinetics and the spatial distribution of the secondary hardening intermetallic phase, which was observed to nucleate heterogeneously on dislocations and sub-grain boundaries. It was revealed that alloys successively subjected to these two strengthening mechanisms exhibit a lower increase in mechanical strength than a simple estimation based on the summation of the two individual strengthening mechanisms

    Defective apoptosis in intestinal and mesenteric adipose tissue of crohn's disease patients

    Get PDF
    Background: Crohn's disease (CD) is associated with complex pathogenic pathways involving defects in apoptosis mechanisms. Recently, mesenteric adipose tissue (MAT) has been associated with CD ethiopathology, since adipose thickening is detected close to the affected intestinal area. However, the potential role of altered apoptosis in MAT of CD has not been addressed. Aims: To evaluate apoptosis in the intestinal mucosa and MAT of patients with CD. Methods: Samples of intestinal mucosa and MAT from patients with ileocecal CD and from non-inflammatory bowel diseases patients (controls) were studied. Apoptosis was assessed by TUNEL assay and correlated with the adipocytes histological morphometric analysis. The transcriptional and protein analysis of selected genes and proteins related to apoptosis were determined. Results: TUNEL assay showed fewer apoptotic cells in CD, when compared to the control groups, both in the intestinal mucosa and in MAT. In addition, the number of apoptotic cells (TUNEL) correlated significantly with the area and perimeter of the adipose cells in MAT. Transcriptomic and proteomic analysis reveal a significantly lower transcript and protein levels of Bax in the intestinal mucosa of CD, compared to the controls; low protein levels of Bax were found localized in the lamina propria and not in the epithelium of this tissue. Furthermore, higher level of Bcl-2 and low level of Caspase 3 were seen in the MAT of CD patients. Conclusion: The defective apoptosis in MAT may explain the singular morphological characteristics of this tissue in CD, which may be implicated in the pathophysiology of the disease. © 2014 Dias et al.Crohn's disease (CD) is associated with complex pathogenic pathways involving defects in apoptosis mechanisms. Recently, mesenteric adipose tissue (MAT) has been associated with CD ethiopathology, since adipose thickening is detected close to the affected intestinal area. However, the potential role of altered apoptosis in MAT of CD has not been addressed. Aims: To evaluate apoptosis in the intestinal mucosa and MAT of patients with CD. Methods: Samples of intestinal mucosa and MAT from patients with ileocecal CD and from non-inflammatory bowel diseases patients (controls) were studied. Apoptosis was assessed by TUNEL assay and correlated with the adipocytes histological morphometric analysis. The transcriptional and protein analysis of selected genes and proteins related to apoptosis were determined. Results: TUNEL assay showed fewer apoptotic cells in CD, when compared to the control groups, both in the intestinal mucosa and in MAT. In addition, the number of apoptotic cells (TUNEL) correlated significantly with the area and perimeter of the adipose cells in MAT. Transcriptomic and proteomic analysis reveal a significantly lower transcript and protein levels of Bax in the intestinal mucosa of CD, compared to the controls; low protein levels of Bax were found localized in the lamina propria and not in the epithelium of this tissue. Furthermore, higher level of Bcl-2 and low level of Caspase 3 were seen in the MAT of CD patients. Conclusion: The defective apoptosis in MAT may explain the singular morphological characteristics of this tissue in CD, which may be implicated in the pathophysiology of the disease96e9854

    L\'{e}vy scaling: the Diffusion Entropy Analysis applied to DNA sequences

    Full text link
    We address the problem of the statistical analysis of a time series generated by complex dynamics with a new method: the Diffusion Entropy Analysis (DEA) (Fractals, {\bf 9}, 193 (2001)). This method is based on the evaluation of the Shannon entropy of the diffusion process generated by the time series imagined as a physical source of fluctuations, rather than on the measurement of the variance of this diffusion process, as done with the traditional methods. We compare the DEA to the traditional methods of scaling detection and we prove that the DEA is the only method that always yields the correct scaling value, if the scaling condition applies. Furthermore, DEA detects the real scaling of a time series without requiring any form of de-trending. We show that the joint use of DEA and variance method allows to assess whether a time series is characterized by L\'{e}vy or Gauss statistics. We apply the DEA to the study of DNA sequences, and we prove that their large-time scales are characterized by L\'{e}vy statistics, regardless of whether they are coding or non-coding sequences. We show that the DEA is a reliable technique and, at the same time, we use it to confirm the validity of the dynamic approach to the DNA sequences, proposed in earlier work.Comment: 24 pages, 9 figure

    Objective No-Reference Stereoscopic Image Quality Prediction Based on 2D Image Features and Relative Disparity

    Get PDF
    Stereoscopic images are widely used to enhance the viewing experience of three-dimensional (3D) imaging and communication system. In this paper, we propose an image feature and disparity dependent quality evaluation metric, which incorporates human visible system characteristics. We believe perceived distortions and disparity of any stereoscopic image are strongly dependent on local features, such as edge (i.e., nonplane areas of an image) and nonedge (i.e., plane areas of an image) areas within the image. Therefore, a no-reference perceptual quality assessment method is developed for JPEG coded stereoscopic images based on segmented local features of distortions and disparity. Local feature information such as edge and non-edge area based relative disparity estimation, as well as the blockiness and the edge distortion within the block of images are evaluated in this method. Subjective stereo image database is used for evaluation of the metric. The subjective experiment results indicate that our metric has sufficient prediction performance
    corecore