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Abstract 

A disintegrin and metalloproteinase 12 (ADAM12) is known to be involved in chondrocyte proliferation and 

maturation however the mechanisms are not fully understood. In this study expression and localization of 

ADAM12 during chondrocyte differentiation was examined in the mouse growth plate by immunohistochemistry. 

Adam12 expression during ATDC5 chondrogenic differentiation was examined by real-time PCR and compared 

with the expression pattern of type X collagen. The clustered regularly interspaced short palindromic repeats 

(CRISPR)-Cas9 system was used to generate Adam12-knockout (KO) ATDC5 cells. Adam12-KO and Adam12 

overexpressing cells were used for analyses of ADAM12 expression with or without TGF-β1 stimulation. 

ADAM12 was identified predominantly in chondrocytes of the proliferative zone in mouse growth plates by 

immunohistochemistry. Adam12 was upregulated prior to Col10a1 during chondrogenic differentiation in wild-

type ATDC5 cells. In Adam12-KO ATDC5 cells, following initiation of chondrogenic differentiation, we observed 

a reduction in Igf-1 expression along with an upregulation of hypertrophy associated Runx2, Col10a1, and type X 

collagen protein expression. In ATDC5 wild-type cells, stimulation with TGF-β1 upregulated the expression of 

Adam12 and Igf-1 and downregulated the expression of Runx2. In contrast, in Adam12-KO ATDC5 cells, these 

TGF-β1-induced changes were suppressed. Adam12 overexpression resulted in an upregulation of Igf-1 and 

downregulation of Runx2 expression in ATDC5 cells. The findings suggest that ADAM12 is important in the 
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regulation of chondrocyte differentiation, potentially by regulation of TGF-β1 dependent signaling and that 

targeting of ADAM12 may have a role in management of abnormal chondrocyte differentiation. 

Key words: Chondrogenic differentiation, ADAM12, IGF-1, RUNX2, Type X collagen  
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1. Introduction 

Endochondral ossification plays important roles in skeletal growth and repair [1], peripheral osteophyte formation 

in osteoarthritis (OA), and the growth of osteochondromas [2, 3]. During endochondral ossification, 

undifferentiated chondrocytes undergo proliferation and hypertrophic differentiation. These hypertrophic 

chondrocytes express predominantly type X collagen, mineralize the surrounding matrix, and ultimately undergo 

apoptosis. This is followed by blood vessel ingrowth into the calcified cartilage, and the ultimate replacement of 

the cartilage with bone [4].  

A disintegrin and metalloprotease 12 (ADAM12) is a member of the ADAM (a disintegrin and 

metalloproteases) family of proteins, comprising a prodomain, metalloproteinase, disintegrin, cysteine-rich and 

epidermal growth factor (EGF)-like domains, as well as a transmembrane domain and cytoplasmic tail [5]. Human 

ADAM12 exists in two splice variants: ADAM12-L, a transmembrane protein similar to mouse ADAM12, and 

ADAM12-S, a shorter secreted form that lacks the transmembrane and cytoplasmic domains [6]. ADAM12 is 

expressed in neonatal bone and is activated in mesenchymal condensation that leads to bone formation [7]. 

ADAM12-S and ADAM12-L are both expressed by human osteoblasts whereas only ADAM12-S is seen in human 

osteoclasts where it appears to have roles in osteoclastogenesis [8]. In genetically modified mouse models, 

ADAM12-S appears to stimulate bone growth by modulating chondrocyte proliferation and maturation [9]. 

Purified ADAM12-S cleaves insulin-like growth factor-binding protein (IGFBP)-3 and IGFBP-5 to release IGF-

1 into the extracellular matrix [10], a function that can potentially lead to chondrocyte proliferation in vivo. 

Significantly, transforming growth factor-β (TGF-β), a regulator of chondrocyte proliferation and cluster 
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formation in OA articular cartilage, increases the expression of ADAM12-L in human OA chondrocytes [11]. 

Collectively, these reports stimulated the current study into the localization and expression of ADAM12 during 

chondrocyte differentiation in the mouse growth plate and investigation of the potential roles of this molecule in 

the regulation of chondrocyte differentiation in vitro. 

 

2. Materials and Methods  

2.1.  Animal tissues 

The current study was reviewed by the Animal Care and Use Committee, Okayama University. Male DBA/1 mice 

(Charles River Japan; Yokohama, Japan), aged 6 to 7 weeks, were used (n = 5) to evaluate the localization of 

ADAM12 during chondrocyte differentiation in vivo. The mice were euthanized by the systemic perfusion of 4% 

paraformaldehyde in 0.1 M phosphate-buffered saline (PBS) under general anesthesia with 2% isoflurane. The 

limbs were dissected and fixed in the same solution for 24 h. The samples were decalcified in 0.3 M EDTA (pH 

7.5) for 1 week. After decalcification, specimens were dehydrated using a graded ethanol series, and embedded in 

paraffin. Serial sections (5-µm thickness) were cut and stained with hematoxylin and eosin (H&E), according to 

standard laboratory protocols.  

 

2.2.  Immunohistochemistry 

To detect ADAM12 and type X collagen in the growth plates, paraffin-embedded sections were deparaffinized, 

rehydrated, and pre-incubated in 1 mg/ml testicular hyaluronidase (Wako; Osaka, Japan) for 30 min at room 



5 
 

temperature. Sections were immersed in 3% H2O2 in PBS to prevent endogenous peroxidase reactions for 10 min 

at room temperature. Non-specific background signals were blocked using 1% bovine serum albumin (BSA; 

Sigma-Aldrich, St Louis, MO, USA). For immunostaining, sections were incubated overnight at 4°C with either 

a rabbit polyclonal antibody against ADAM12 that recognizes both the transmembrane and secreted forms (1:500; 

14139-1-AP, Proteintech, Chicago, IL, USA) or a rabbit polyclonal antibody anti-type X collagen alpha 1 (1:500; 

GTX37732, GeneTex, Irvine, CA, USA). Negative control sections were treated by a BSA solution without the 

primary antibody. After thorough rinsing, sections were finally incubated with Histofine Simple Stain MAX-PO 

(Nichirei; Tokyo, Japan) for 30 min. After the color reaction using diaminobenzidine (Nichirei), sections were 

counterstained with hematoxylin. Immunoreactivity was evaluated by light microscopy.  

The growth plate shows two distinct zones—the proliferative zone and the hypertrophic zone—classified by 

the shape and size of the chondrocytes. Chondrocytes with a definite, diffusely stained cytoplasm were regarded 

as ADAM12 positive. The positive reaction of type X collagen in the extracellular matrix also helped to define 

this hypertrophic zone. The populations of ADAM12-positive cells in the proliferative and hypertrophic zones of 

the growth plate were quantified by counting the number of cells within these two zones, respectively, and 

averaged. Cell counting was performed on at least three fields at 40× magnification using one section from each 

of 5 mouse growth plates. The number of immunopositive chondrocytes was divided by the total number of 

chondrocytes within the two zones to calculate the positive chondrocyte ratio. 

 

2.3.  ATDC5 cell cultures 
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The ATDC5 cell line was obtained from the Riken Cell Bank (Tsukuba, Japan). The cell line serves as an in vitro 

system with which to model the stages of chondrogenic differentiation and maturation [12,13]. The cells were 

cultured in a maintenance medium consisting of a 1:1 mixture of Dulbecco’s modified Eagle’s medium (DMEM) 

and Ham’s F12 medium (Invitrogen-Gibco; Carlsbad, CA, USA), and containing 5% fetal bovine serum (FBS), 

50 μg/mL penicillin, and 100 μg/mL streptomycin [14,15]. ATDC5 cells were plated at 6.4 ×104 cells/well in a 6-

well plate with the maintenance medium, and cells were induced to undergo chondrogenesis when they had 

reached 70% to 80% confluence. Chondrogenic differentiation was induced by differentiation medium consisting 

of DMEM and Ham’s F12, 0.1% BSA (Sigma-Aldrich), 1% insulin-transferrin-selenium (ITS; I3146, Sigma-

Aldrich), 50 μg/mL penicillin, 100 μg/mL streptomycin, and 20 µg/mL L-ascorbic acid to avoid unnecessary 

induction by FBS [16]. The medium was replaced every other day. Cells were maintained at 37°C in a humidified 

atmosphere of 5% CO2 in air. 

 

2.4.  Creation of Adam12-knockout (KO) ATDC5 cells using the clustered regularly interspaced short 

palindromic repeats (CRISPR)-Cas9 system 

To create the single-guide RNA (sgRNA) expression vectors, the annealed oligonucleotides for the target site of 

ADAM12 (5’-GCATCATGAACCCGTCCACG-3’ and 5’-TATTCTGACATCGACGATTG-3’) were cloned into 

the MLM3636 vector (#43860; Addgene, Cambridge, MA). These plasmids and the Cas9 expression plasmid 

(#51142; Addgene) were co-transfected into ATDC5 cells for 2 days. The adherent cells were trypsinized and 

resuspended in 2% FBS in PBS. Single-cell suspensions were sorted into 96-well plates using a FACSAria II cell 
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sorter (BD Biosciences; San Jose, CA, USA). To confirm the KO, two-dimensional gel electrophoresis of the 

genomic PCR product and Sanger sequencing were performed (Fig. 1A and B). The cells were cultured and 

chondrogenesis was induced in the same way as that for wild-type ATDC5 cells (as above). 

 

2.5.  RNA extraction and real-time quantitative PCR analysis 

To examine the expression of Adam12, Col10a1, Igf-1 and runt-related transcription factor2 (Runx2) in ATDC5 

cells, total RNA was prepared using an RNeasy Lipid Tissue Mini Kit (Qiagen; Venlo, The Netherlands) according 

to the manufacturer’s instructions. Complementary DNA of ATDC5 cells after 0, 7, 14, 21, 28, and 35 days of 

culture were reverse transcribed from 1 μg of total RNA using a QuantiTect Reverse Transcription Kit (Qiagen). 

Real-time PCR analysis was performed using an Mx3000P QPCR System (Agilent Technologies; Santa Clara, 

CA, USA) with Taqman Gene Expression Assays for mouse Adam12 (Mm00475719_m1), Col10a1 

(Mm00487041_m1), Igf-1 (Mm00439560_m1), and Runx2 (Mm00501584_m1) (Applied Biosystems; Foster City, 

CA, USA). Amplification of the housekeeping gene Gapdh was used to normalize the efficiency of cDNA 

synthesis and the amount of RNA. We calculated the final expression levels by dividing the expression levels of 

Adam12, Col10a1, Igf-1, and Runx2 by the expression level of Gapdh.  

 

2.6.  Western blotting 

ATDC5 cells were induced to undergo chondrogenic differentiation for up to 5 weeks. At 3, 4 and 5 weeks, cells 

were scraped on ice with 1× Laemmli buffer (Bio-Rad; Hercules, CA, USA) containing 5% β-mercaptoethanol. 
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Total protein samples were homogenized in SDS buffer (4% 180 SDS, 125 mM Tris–glycine, 10% 2-

mercaptoethanol, 2% bromophenol blue in 30% glycerol) and centrifuged at 9,000 ×g for 10 min at 4°C to 

remove debris. Aliquots were subjected to polyacrylamide gel electrophoresis in the presence of SDS (SDS-

PAGE) followed by electrotransfer onto PVDF membranes (Hybond-P; GE Healthcare, Tokyo, Japan). 

Membranes were blocked overnight with Block Ace (UKB80; Dainippon Sumitomo Pharma, Osaka, Japan) and 

then probed overnight at 4°C with a rabbit polyclonal antibody against IGF-1 (1:1000 dilution; ab9572, Abcam, 

Cambridge, UK), a rabbit polyclonal antibody against RUNX2 (1:1000 dilution; ab23981, Abcam), a goat 

polyclonal antibody against type X collagen alpha 1 (1:500 dilution; sc-323750, Santa Cruz Biotechnology, 

Dallas, TX, USA) and a mouse monoclonal antibody against GAPDH (1:1000 dilution; sc-32233, Santa Cruz 

Biotechnology). Signals were detected with goat anti-rabbit IgG horseradish peroxidase (HRP) (1:50,000 

dilution; sc-2004, Santa Cruz Biotechnology), donkey anti-goat IgG HRP (1:50,000 dilution; sc-2020, Santa 

Cruz Biotechnology) and goat anti-mouse IgG HRP (1:50,000 dilution; sc-2005, Santa Cruz Biotechnology) and 

Immunostar LD (290-69904, Wako) detection reagents. The lumino-labeled membranes were analyzed on an 

Amersham Imager 600 CCD-based 190 chemiluminescent analyzer (GE Healthcare). Relative band intensities 

were quantified using ImageQuant TL software (GE Healthcare). 

 

2.7.  TGF-β stimulation in ATDC5 cells 

Both wild-type and Adam12-KO ATDC5 cells were cultured in a maintenance medium consisting of a 1:1 mixture 

of DMEM and Ham’s F12 medium (Invitrogen-Gibco), and containing 5% FBS, 50 μg/mL penicillin, and 100 
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μg/mL streptomycin. Cells were plated at 2.0 ×104 cells /well into the wells of a 24-well plate. The cells were 

transferred to serum free medium for 12h before treatment of TGF-β. Cells were stimulated with 10 ng/mL 

recombinant TGF-β1 (Cell Signaling Technology) for 24 h. After treatment, the gene expression of Adam12, Igf-

1 and Runx2 was examined by real-time PCR to compare expression changes between wild-type and Adam12-

KO cells. 

 

2.8.  Adam12 overexpression in ATDC5 cells 

To construct the Adam12 expression vector, the mouse Adam12 coding region was obtained from the mouse 

Adam12 open reading frame clone (FLH481306.01X) with Platinum Super Fi DNA Polymerase (Invitrogen), and 

subcloned into the pcDNA3.1 vector (pcDNA3.1 Mm ADAM12). ATDC5 cells were seeded into the wells of a 

24-well plate at 2.0 × 104 cells/cm2 and transiently transfected with the pcDNA3.1 vector using Lipofectamine 

2000 reagent (Invitrogen). We used empty pcDNA3.1 vector as a control. The expression of Adam12 in the 

Adam12-overexpressed cells was elevated 100,000-fold above that of the empty vector-transfected controls (data 

not shown). At 24 h after transfection, the gene expression of Igf-1 and Runx2 was examined by real-time 

quantitative PCR.  

 

2.9.  Statistical Analysis 

The results are expressed as the mean ± standard deviation. All in vitro work was performed in triplicate and 

repeated on three (or more) independent occasions. Statistical analyses were performed using R for Windows 
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(www.r-project.org). The student’s t-test was used to compare two groups of data. Differences among more than 

two groups were compared using ANOVA with Bonferroni post hoc test. Significance was set at p values < 0.05. 

 

3. Results 

3.1.  Expression of ADAM12 in the mouse growth plate 

ADAM12 expression was observed in the chondrocytes of the proliferative and hypertrophic zones of the mouse 

growth plate (Fig. 2A-C). The positive cell ratio for ADAM12 in the chondrocytes of the proliferative zone (49.4% 

± 8.8%) was significantly higher (p < 0.01) than that of the hypertrophic zone (28.2% ± 9.6%) (Fig. 2D). 

 

3.2.  Gene expression pattern during insulin-induced chondrogenic differentiation of ATDC5 cells 

No significant differences were seen in Adam12 gene expression at 1 ,2, 3, 4, and 5 weeks compared to basal 

levels (week 0). A significant increase in Adam12 expression was however seen after 3 weeks differentiation when 

compared to levels at 1 week. (Fig. 3A). Col10a1 expression became evident after 3 weeks of insulin-induced 

chondrogenic differentiation before peaking at 4 weeks (Fig. 3B).  

 

3.3.  Effect of Adam12 gene knock-out during insulin-induced chondrogenic differentiation in ATDC5 cells 

During insulin-induced chondrogenic differentiation of wild-type ATDC5 cells Igf-1 expression increased 

significantly to a maximum level at 4 weeks. However in Adam12-KO ATDC5 cells this Igf-1 response was 

completely absent (Fig. 4A). In contrast to Igf-1, Runx2 expression initially increased significantly after 1 week 

http://www.r-project.org/
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of insulin-induced chondrogenic differentiation and thereafter decreased to basal levels in wild-type ATDC5 cells. 

In Adam12-KO ATDC5 cells Runx2 expression increases following the initiation of chondrogenic differentiation, 

peaks at 2 weeks and thereafter decreases to basal levels at 4 and 5 weeks (Fig. 4B). At 3, 4, and 5 weeks after the 

initiation of chondrogenic differentiation, Col10a1 expression was significantly higher in the Adam12-KO ATDC5 

cells than in the wild-type ATDC5 cells (Fig. 4C). The results of western blot analysis showed that Igf-1 protein 

expression is decreased in Adam12 KO ATDC5 cells compared to wild-type cells at 3-5 weeks of chondrogenic 

differentiation. Runx2 protein expression peaks at 4 weeks in Adam12 KO ATDC5 cells. Type X collagen protein 

expression showed a time-dependent upregulation in Adam12-KO ATDC5 cells during 3 to 5 weeks. (Fig. 4D). 

 

3.4.  Effect of TGF-β stimulation on Adam12-KO and Adam12-overexpressing ATDC5 cells 

Stimulation with 10ng/ml TGF-β1 for 24 hours induced expression of Adam12 and Igf-1 in wild-type ATDC5 

cells whilst decreasing expression of Runx2. In contrast, in the Adam12-KO ATDC5 cells there was no effect of 

TGF-β1 on expression of Igf-1 and Runx2 (Fig. 5A-C). Overexpression of Adam12 in ATDC5 cells caused 

increased expression of Igf-1 whilst decreasing Runx2 expression (Fig. 5D and E).  

 

4. Discussion 

In the current study we have demonstrated for the first time that ADAM12 is expressed in the mouse growth plate, 

predominantly in the chondrocyte proliferative zone but also to a lesser extent in the hypertrophic zone. 

Furthermore, through our in vitro studies, we show that Adam12 expression is increased during chondrogenic 
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differentiation and begins to decline after 3 weeks during chondrocyte hypertrophy. The human ADAM12 gene is 

alternatively spliced, resulting in two major protein isoforms: a long, transmembrane form called ADAM12-L, 

and a short, secreted form designated ADAM12-S, which lacks the transmembrane and cytoplasmic domains. 

Both forms are active metalloproteinases [5,17]. As ADAM12 in mice is most similar to the human ADAM12-L 

splice variant [5], we examined the function of the transmembrane form during chondrogenic differentiation in 

ATDC5 cells.  

Several molecules, including IGF-1, RUNX-2, and type X collagen, have roles in endochondral ossification 

[18,19], with RUNX2 known to regulate endochondral ossification through the control of chondrocyte 

proliferation and differentiation [20]. RUNX2 is a crucial transcription factor for type X collagen expression and 

chondrocyte hypertrophy. Interestingly, Adam12-KO ATDC5 cells showed marked upregulation of both Runx2 

and Col10a1 expression. Type X collagen protein expression levels were also upregulated in the Adam12-KO 

ATDC5 cells as compared with wild-type ATDC5 cells. As overexpression of Adam12 downregulated Runx2 gene 

expression, the results suggest that ADAM12 may have a role in regulating type X collagen gene expression 

through RUNX2. 

TGF-β signaling is recognized as having a critical role in regulation of chondrocyte homeostasis and articular 

cartilage degradation [21]. A prior study has shown that TGF-β–induced ADAM12-L expression enhances the 

bioavailability of IGF-1 from the IGF-1–IGFBP-5 complex by selective digestion of IGFBP-5, indicating possible 

involvement of ADAM12-L in pathways that lead to chondrocyte proliferation and cloning in human osteoarthritic 

articular cartilage [11]. TGF-β1 also arrests the downstream differentiation of chondrocytes at an early stage of 



13 
 

hypertrophy [22]. In the current study, treatment of ATDC5 cells with TGF-β1 upregulated Igf-1 and 

downregulated Runx2, with these effects suppressed in Adam12-KO cells. Therefore we hypothesize that the effect 

of TGF-β1 on gene expression of IGF-1 and RUNX2 might be, at least in part, modulated by ADAM12. The 

mechanisms are not yet clear but as BMP signaling directly accelerates the expression of Col10a1 in concert with 

RUNX2 [23,24], ADAM12 may have a negative influence on BMP signaling pathways potentially by enhancing 

TGF-β1 signalling. TGF-β promotes the early stage of chondrogenesis by enabling Smad3 to form an active 

transcriptional complex with CEBP/p300 and Sox9 [25]. However, at the later stages of maturation TGF-β 

signalling promotes the maturation and hypertrophy of chondrocytes [26]. As Smad3-deficient chondrocytes show 

enhanced BMP signalling and accelerated hypertrophic differentiation in vitro, endogenous TGF-β signalling is 

likely to have a role in suppressing BMP signalling during chondrocyte maturation [27]. Recently SnoN has been 

shown to mediate a negative feedback mechanism by which TGF-β can inhibit BMP signalling and allow 

hypertrophic maturation of chondrocytes [28]. SnoN acts as a negative regulator of ADAM12 expression in a 

Smad2/3-dependent manner, binding to nuclear Smad complexes and repressing their transcriptional activities 

[29,30]. In response to TGF-β stimulation, SnoN undergoes ubiquitination and rapid proteasomal degradation [31] 

with subsequent de-repression of ADAM12 expression. 

As yet, there is limited information on the roles of ADAM12 in endochondral ossification. A recent study using 

zebrafish showed that ADAM12 expressed in both cartilage and bone might regulate bone growth [32]. Adam12-

deficient mice have been reportedly constructed by homologous recombination but 30% of the homozygotes died 

before weaning within 1 week of birth [33], albeit, the cause of death is unknown. A previous study reported that 
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both the width of the hypertrophic zone in the growth plate and the degree of longitudinal bone growth were 

increased in Adam12-S transgenic mice. However, these Adam12-deficient mice showed normal femur length [9], 

possibly due to compensation by other ADAM proteins [34].  

In conclusion, we have demonstrated that ADAM12 is expressed in the proliferative and hypertrophic zones of 

the mouse growth plate. Our in vitro data using ATDC5 cells supports a role for ADAM12 being involved in TGF-

β/BMP signaling pathway cross talk as a negative regulator of BMP signaling in the regulation of chondrocyte 

differentiation. It will be interesting to explore the potential involvement of microRNAs in future studies, some 

of which have been reported to regulate ADAM12 expression [35].  
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Figure Legends 

Fig. 1 Creation of Adam12-knockout (KO) ATDC5 cells using the clustered regularly interspaced short 

palindromic repeats (CRISPR)-Cas9 system. (A) Schematic illustration of the knockout strategy for targeting the 

ADAM12 gene. Two gRNAs were designed in the exons of the Adam12 gene. The gRNA targeting sequence is 

marked by red, and the protospacer adjacent motif (PAM) is marked by green. (B) Chromatogram of the Sanger 

sequencing result for homozygote mutant 

 

Fig. 2 Expression of ADAM12 in the mouse growth plate. Immuno-staining for ADAM12 (A) and type X collagen 

(B). Negative control (C). (D) The expression of ADAM12 in the hypertrophic zone was significantly higher than 

that in the proliferative zone (n = 5. *p < 0.01 between proliferative and hypertrophic zones). Scale bar: 50 μm. 

 

Fig. 3 Results of real-time PCR showing (A) Adam12 and (B) Col10a1 gene expression during insulin-induced 

chondrogenic differentiation in ATDC5 cells. (n = 3. *p < 0.05, relative to 1 week) 

 

Fig. 4 Results of real-time PCR showing the effect of Adam12 knockout (KO) on the expression of Igf-1, Runx2, 

and Col10a1 during insulin-induced chondrogenic differentiation in ATDC5 cells. Adam12-KO ATDC5 cells 

showed significant reduction in (A) Igf-1 and significant upregulation of both (B) Runx2 and (C) Col10a1 when 

compared with wild-type (wt) ATDC5 cells (n = 3. *p<0.05 relative to 0w (wt), ＃p<0.05 relative to 0w (Adam12 

KO), §p＜0.05 between wt and Adam12 KO). Results of western blot analysis (D) showing protein levels of Igf-
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1, Runx2 and Col10a1 in the Adam12-KO and wild-type (wt) ATDC5 cells at 3 to 5 weeks of chondrocyte 

differentiation. 

 

Fig. 5 Results of real-time PCR showing the effect of TGF-β1 stimulation for 24 h on the expression of (A) 

Adam12, (B) Igf-1, and (C) Runx2 in wild-type (wt) and Adam12-knockout (KO) ATDC5 cells. (n = 4. *p < 0.05). 

Results of real-time PCR showing the effect of Adam12 overexpression on (D) Igf-1 and (E) Runx2 gene 

expression in ATDC5 cells. (n = 3. *p < 0.05 between wt and Adam12 overexpressed cells) 
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