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Stereoscopic images are widely used to enhance the viewing experience of three-dimensional (3D) imaging and communication
system. In this paper, we propose an image feature and disparity dependent quality evaluation metric, which incorporates human
visible system characteristics. We believe perceived distortions and disparity of any stereoscopic image are strongly dependent
on local features, such as edge (i.e., nonplane areas of an image) and nonedge (i.e., plane areas of an image) areas within the
image. Therefore, a no-reference perceptual quality assessment method is developed for JPEG coded stereoscopic images based
on segmented local features of distortions and disparity. Local feature information such as edge and non-edge area based relative
disparity estimation, as well as the blockiness and the edge distortion within the block of images are evaluated in this method.
Subjective stereo image database is used for evaluation of the metric. The subjective experiment results indicate that our metric
has sufficient prediction performance.

1. Introduction

Nowadays, three-dimensional (3D) stereo media is becoming
immersive media to increase visual experience as natural
in various applications ranging from entertainment [1] to
more specialized applications such as remote education
[2], robot navigation [3], medical applications like body
exploration [4], and therapeutic purposes [5]. There are
many alternative technologies for 3D image/video display
and communication, including holographic, volumetric, and
stereoscopic; stereoscopic image/video seems to be the most
developed technology at the present [6]. Stereoscopic image
consists of two images (left and right views) captured by
closely located (approximately the distance between two
eyes) two cameras. These views constitute a stereo pair and
can be perceived as a virtual view in 3D by human observers
with the rendering of corresponding view points. Although
the technologies required for 3D image are emerging rapidly,
the effect of these technologies as well as image compression
on the perceptual quality of 3D viewing has not been thor-
oughly studied. Therefore, perceptual 3D image quality is an
important issue to assess the performance of all 3D imaging

applications. There are several signal processing operations
that have been designed for stereoscopic images [7] and some
researchers are still working to develop a new standard for
efficient multiview image/video coding [8]. They believe the
image compression technique that used in 2D image material
can also be applied independently on the left and right
images of a stereo image pair to save valuable bandwidth
and storage capacity. Although subjective assessment is the
most accurate method for perceived image quality, it is
time consuming, and expensive. Therefore, objective quality
evaluation method is required that can automatically predict
perceptual image quality.

In the last two decades, a lot of work have been con-
centrated to develop conventional 2D image/video quality
assessment methods. Whereas, still now no comparable
effort has been devoted to the quality assessment for
3D/stereoscopic images. A full-reference (FR) quality metric
for the assessment of stereoscopic image pairs using the
fusion of 2D quality metrics and of the depth information
is proposed in [9]. The study evaluated that the FR metric
of 2D quality assessment can be used for an extension to
3D with the incorporation of depth information. In [10],
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the selection of the rate allocation strategy between views
is addressed for scalable multiview video codec to obtain
the best rate-distortion performance. In [11], a FR quality
metric is proposed for stereoscopic color images. The metric
is proposed based on the use of binocular energy contained
in the left and right retinal images calculated by complex
wavelet transform and bandelet transform. In [12], a FR
overall stereoscopic image quality metric has been suggested
by combining conventional 2D image quality metric with
disparity information. In [13], the quality of 3D videos
stored as monoscopic color videos that augmented by pixel
depth map and finally this pixel information used for color
coding and depth data. In [14], the effect of low pass filtering
one channel of a stereo sequence is explored in terms of
perceived quality, depth, and sharpness. The result found
that the correlation between image quality and perceived
depth is low for low pass filtering. A comprehensive analysis
of the perceptual requirements for 3D TV is made in [15]
along with a description of the main artifacts of stereo
TV. In [16], the concept of visual fatigue and its subjective
counterpart, visual discomfort in relation to stereoscopic
display technology, and image generation is reviewed. To
guarantee the visual comfort in consumer applications, such
as stereoscopic television, it is recommended to adhere
to a limit of “one degree of disparity,” which still allows
sufficient depth rendering for most applications. In [17], the
effects of camera base distance and JPEG coding on overall
image quality, perceived depth, perceived sharpness, and
perceived eye strain are discussed. The relationship between
the perceived overall image quality and the perceived depth
are discussed in [18]. In [19], an FR quality assessment model
is proposed for stereoscopic color images based on texture
features of left image as well as disparity information between
left and right images. In [20], a positive relationship between
depth and perceived image quality for uncompressed stereo-
scopic images is described. Subjective ratings of video quality
for MPEG-2 coded stereo and nonstereo sequences with
different bit rates are investigated in [21]. In [22], a crosstalk
prediction metric is proposed for stereoscopic images. The
method try to predict level of crosstalk perception based on
crosstalk levels, camera baseline, and scene content.

Although perceptual quality of stereoscopic images
depends mainly on the factors such as the depth perception,
level of crosstalk, and visual discomfort, overall perceptual
quality reflects the combined effect of the multidimensional
factors [16]. We believe that human visual perception is
very sensitive to edge information and perceived image
distortions are strongly dependent on the local features
such as edge, and nonedge areas and also depth/disparity
perception is dependent on the local features of images.
Therefore, in this work we propose a no-reference (NR)
quality assessment method for stereoscopic images based
on segmented local features of distortions and disparity.
In many practical applications, the reference image is not
available, therefore an NR quality assessment approach is
desirable. Here, we limit our work to JPEG coded stereo-
scopic images only. A similar approach based on three local
features such as edge, flat, and texture was made in [23]. The
metric used many parameters (thirteen) and local features

(three). Consequently, computational cost of the model was
high. Therefore, we consider two local features (edge and
nonedge) and less parameters with low computational cost
in this paper. A previous instantiation of this approach was
made in [24] and promising results on simple tests were
achieved. In this paper, we generalize this algorithm, and
provide a more extensive set of validation results on a stereo
image databases. The rest of the paper is organized as follows:
Section 2 describes briefly the subjective database that is used
to evaluate our method. The details of our approach is given
in Section 3. Results are discussed in Section 4 and finally, the
paper is concluded in Section 6.

2. The Subjective Databases

We conducted subjective experiment on 24 bit/pixel RGB
color stereoscopic images in the Media Information and
Communication Technology (MICT) laboratory, University
of Toyama [23]. The database contained JPEG coded sym-
metric and asymmetric 490 stereoscopic image pairs (70
symmetric, and 420 asymmetric pairs) of size 640 × 480.
Out of all, ten were reference stereo pairs. The seven quality
scales (QS: 10, 15, 27, 37, 55, 79, and reference) were
selected for the JPEG coder. A double stimulus impairment
scale (DSIS) method was used in the subjective experiment.
The impairment scale contained five categories marked with
adjectives and numbers as follows: “Imperceptible = 5”,
“Perceptible but not annoying = 4”, “Slightly annoying =
3”, “Annoying = 2,” and “Very annoying = 1”. A 10-inch
auto stereoscopic, LCD (SANYO) display (resolution: 640 ×
480) was used in this experiment. Twenty-four nonexpert
subjects were shown the database; most of them were
college/university student. Mean opinion scores (MOSs)
were then computed for each stereo image after the screening
of postexperiment results according to ITU-R Rec. 500-10
[25]. The details of the experiment were discussed in [24].

3. Proposed Objective Method

The primary function of the human visual system (HVS) is to
extract structural or edge information from the viewing field
[26]. Therefore, Human visual perception is very sensitive to
edge detection, and consequently, perceive distortions should
be strongly dependent on local features such as edge, and
nonedge. For example, in theory, the visual distortions of
an image increase with an increased rate of compression.
However, the relationship between the distortions and the
level of compressions is not always straight forward. It
strongly depends on the texture contents of an image as well.
In order to verify the relationship, we analyse the degradation
of images which causes visual difficulty, that is, appearance
of image distortions at different compression levels for
various textures of images. Here, we consider an image
(see Figure 1(a)) that contains a variety of textures such
as edge and nonedge areas. Out of all edge (nonuniform)
and nonedge (uniform) areas in Figure 1(a), we analyse
a small portion of uniform and nonuniform areas which
are represented by the top-right rectangular box and the
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(a) Reference image; Image taken from [27] (b) Compressed image; QS = 10

(i) QS = 50 (ii) QS = 25

(iii) QS = 15 (iv) QS = 10

(c) A small portion of an uniform area

(i) QS = 50 (ii) QS = 25

(iii) QS = 15 (iv) QS = 10

(d) A small portion of a nonuniform area

Figure 1: Variation of perceived distortion (uniform and nonuniform areas).

bottom-right rectangular box (dotted line), respectively. A
high level of JPEG compression is applied to the image
which is shown in Figure 1(b). The result shows the blocking
distortions are more visible to uniform areas compared to
that the nonuniform areas (see the corresponding areas in
the compressed image) even though the level of compression
is equal. In order to study the relationship more extensively
we apply four levels of compression (QS: 50, 25, 15, and 10)
to the image and consider expanded views of the portions
of uniform and nonuniform areas (see the rectangular
box areas) for each level of compression which are shown
in Figures 1(c) and 1(d), respectively. These two figures
indicate that perceived distortions for these areas are not
similar even though the compression levels are equal. In
details, blocking distortions are more visible in uniform areas
compared to nonuniform areas (see Figures 1(c)(iii) and
1(d)(iii), and also Figures 1(c)(iv) and 1(d)(iv)). Similarly,
the blur distortions are more visible in the nonuniform
areas compared to uniform areas (see Figures 1(c)(iii) and
1(d)(iii), and also Figures 1(c)(iv) and 1(d)(iv)). The results
indicate that visibility of image distortions are strongly
depended on local features such as edge and nonedge areas.

Thus, we also believe that 3D depth perception is strongly
dependent on objects, structures, or textures edges of stereo
image content. Therefore, an NR perceptual stereoscopic
image quality assessment method is proposed based on

segmented local features of distortions and disparity in this
research. An efficient 2D compression technique, JPEG codec
is applied independently on the left and right views of the
stereo image pairs. Since JPEG is a block based discrete
cosine transform (DCT) coding technique, both blocking
and edge distortions may be created during quantization
of DCT coefficients in the coded images. Blocking effect
occurs due to the discontinuity at block boundaries, which
is generated because the quantization in JPEG is block
based and the blocks are quantized independently. Here,
blockiness of a block is calculated as the average absolute
difference around the block boundary. The edge distortion,
which makes blurring effect, is mainly due to the loss of
high-frequency DCT coefficients, which smooths the image
signal within each block. Thus, higher blurring represents a
smoother image signal which causes the reduction of signal
edge points. Consequently, average edge point detection
measures of blocks give more insight into the relative edge
distortion in the image. Here, zero-crossing technique is
used as an edge detector. Although, the impact of coding
distortions on the perceived stereoscopic image quality of
an asymmetric image pair depends on the visual appearance
of the artifact, where blockiness appears to be much more
disturbing than blur [28], we take into account the maxi-
mum blockiness and edge distortion measures between the
left and right views. Therefore, we consider higher blockiness
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Figure 2: Proposed NR quality evaluation method.

and lower zero-crossing values between the two views. For
simplicity, only the luminance component is considered to
make overall quality prediction of color stereo images. As
image distortions as well as disparity are estimated based
on segmented local features, a block based segmentation
algorithm is applied to identify edge and nonedge areas of
an image which is discussed in details in [24]. Subsequently,
the distortions and disparity measures are described in the
next Sections. The block diagram of the proposed method is
shown in Figure 2.

3.1. Image Distortions Measure. We estimate blockiness and
zero-crossing to measure JPEG coded image distortions in
spatial domain based on segmented local features. Firstly, we
calculate blockiness and zero-crossing of each 8 × 8 block
of the stereo image pair separately (left and right images).
Secondly, we apply the block (8 × 8) based segmentation
algorithm to the left and right images individually to classify
edge, and nonedge blocks in the images [24]. Thirdly, we
average each value of blockiness and zero-crossing separately
for edge, and nonedge blocks of each image of the stereo pair.
Fourthly, the total blockiness and zero-crossing of the stereo
image pair is estimated respectively based on the higher
blockiness value and lower zero-crossing value between
the left and right images distinctly for edge, and nonedge
blocks. And finally, we update these blockiness and zero-
crossing values by some weighting factors that are optimized
by an optimization algorithm. The mathematical features,
blockiness and zero-crossing measures within each block of
the images are calculated horizontally and then vertically.

For horizontal direction: let the test image signal be
x(m,n) for m ∈ [1,M] and n ∈ [1,N], a differencing signal
along each horizontal line is calculated by

dh(m,n)

= x(m,n + 1)− x(m,n), n ∈ [1,N − 1], m ∈ [1,M].
(1)

Blockiness of a block (8 × 8) in horizontal direction is
estimated by

Bbh = 1
8

8∑

i=1

∣∣dh
(
i, 8 j

)∣∣, (2)

where “i” and “8 j” are, respectively, number of row and
column position, and j = 1, 2, 3, . . . (N/8).

For horizontal zero-crossing (ZC) we have

dh-sign(m,n) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if dh(m,n) > 0,

−1 if dh(m,n) < 0,

0 otherwise,

dh-mul(m,n) = dh-sign(m,n)× dh-sign(m,n + 1).

(3)

We define for n ∈ [1,N − 2]:

zh(m,n) =
{

1 if dh-mul(m,n) < 0,

0 otherwise,
(4)

where the size of zh(m,n) is M×(N−2). The horizontal zero-
crossing of a block (8× 8), ZCbh, is calculated as follows:

ZCbh =
8∑

i=1

8∑

j=1

zh
(
i, j
)
, (5)

Thus, we can calculate blockiness and zero-crossing of each
available block of the left and right images.

For vertical direction: we can also calculate the differ-
ences of signal along each vertical line as follows:

dv(m,n)

= x(m + 1,n)− x(m,n), n ∈ [1,N], m ∈ [1,M − 1].
(6)

Similarly, the vertical features of blockiness (Bbv) and zero-
crossing (ZCbv) of the block are calculated. Therefore, the
overall features Bb and ZCb per block are given by

Bb = Bbh + Bbv

2
, ZCb = ZCbh + ZCbv

2
. (7)

Consequently, the average blockiness value of edge, and
nonedge areas of the left image are calculated by:

Ble = 1
Ne

Ne∑

b=1

Bbe,

Bln = 1
Nn

Nn∑

b=1

Bbn,

(8)

where Ne and Nn are, respectively, the number of edge,
and nonedge blocks of the image. Similarly, the average
blockiness values of Bre, and Brn for the right image are
calculated.
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Figure 3: Blockiness versus different coding levels for Cattle image pairs (a) L, R: QS55-Seven different coding levels. (b) L, R: Ref-Seven
different coding levels.

Accordingly, the average zero-crossing values of ZCle, and
ZCln for the left image are estimated by

ZCle = 1
Ne

Ne∑

b=1

ZCbe,

ZCln = 1
Nn

Nn∑

b=1

ZCbn.

(9)

Similarly, the average zero-crossing values of ZCre, and
ZCrn for the right image are calculated. We then calculate
the total blockiness and zero-crossing features of edge, and
nonedge areas of the stereo image. For the total blockiness
features (Be and Bn) of the stereo image, we consider only
the higher values between the left and right images by the
following algorithm:

Be/n (Bl, Br) = max(Bl, Br). (10)

However for zero-crossing features (ZCe, and ZCn), we
estimate lower values between the left and right images by
the following algorithm:

ZCe/n (ZCl, ZCr) = min(ZCl, ZCr). (11)

Finally, the overall blockiness, and zero-crossing of each
stereo image pair are calculated by

B = Bw1
e · Bw2

n

Z = ZCw3
e · ZCw4

n ,
(12)

where w1 and w2 are the weighting factors for the blockiness
of edge, and nonedge areas and also w3 and w4 are the
weighting factors for zero-crossing.

3.1.1. Significance of Considering the Maximum Blockiness
of a Stereo Pair. In this section, we discuss the reason for
choosing the maximum blockiness of a stereo pair for our
model. The goal is to measure the maximum possible block-
iness within a stereo pair so that of the metric can correlate
well with human viewers’ perception without actual human.
Because, blockiness is one of the most annoying artifacts
for human eyes. Moreover, the model is developed both for
symmetric and asymmetric images. In order to take into
count the highest degradation, we consider the maximum
blockiness between the left and the right views. To explain the
consideration of the maximum blockiness, we took a stereo
image “Cattle” (the image from the MICT database [26]).
The coding levels versus blockiness of the stereo image are
shown in Figure 3. We examine both the highest and average
blockiness between the two views. Figure 3 shows variations
of blockiness with the increasing of bit rate. The results
indicate that the blockiness variation is higher in case of
highest of blockiness compared to the average blockiness for
increasing of bit rate. The normalized MOS (NMOS) versus
blockiness (N-blockiness) with increasing bit rate for two
types of stereo images is shown in Figure 4. The coding levels
(L, R: Ref-10, Ref-15, Ref-27, Ref-37, Ref-55, Ref-79,and Ref-
Ref), and (L, R: 79-10, 79-15, 79-27, 79-37, 79-55, 79-79, and
79-Ref) in the Figure 4 indicate increasing bit rate. Although
NMOS scores show an increasing trend with decreasing
N-blockiness, the consideration of maximum blockiness
(Higher-B) correlates inversely better with NMOS compared
to average blockiness (Average-B). Here, NMOS versus the
maximum N-blockiness features for edge (i.e, non-plane)
and nonedge (i.e., plane) areas along with a wide variety of
quality pairs for Car and Cattle images are also shown in
Figure 5. The two blockiness features (Be and Bn) support
the similar trend of inverse nature with respect to NMOS.
Therefore, the above results suggest that the consideration of
the maximum blockiness with the two blockiness features is
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Figure 4: Normalized MOS versus blockiness for different Cattle image pairs. (a) L, R: Ref-QS10, Ref-QS15, Ref-QS27, Ref-QS37, Ref-QS55,
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Figure 5: Normalized MOS versus blockiness for edge and nonedge areas of different Car and Cattle image pairs. (a) NMOS versus N-
blockiness (edge areas, Be), (b) NMOS versus N-blockiness (nonedge areas, Bn).

more justified than the average blockiness for developing of
an objective model.

3.1.2. Significance of Considering the Minimum Zero-Crossing
of a Stereo Pair. An analysis of choosing the minimum zero-
crossing value between the left and the right views of a
stereo pair is given in this section. In [29], it has been
discussed that the average edge point detection within image
blocks gives better insight of edge distortion measurement
within an image. Consequently, the zero-crossing values
show a decreasing (i.e., increasing edge distortion) trend
with the increasing compression level. Therefore, there is
a relationship with the transition of zero-crossing and the
overall edge distortion within an image. In order to study the

relationship, we take a stereo image pair, Cattle. Normalized
MOS (NMOS) versus zero-crossing (N-zero crossing) of
the stereo image is shown in Figure 6. We consider both
the minimum (Lower-ZC) and the average zero-crossing
(Average-ZC) value of the stereo pair. The Figure 6 shows
that the minimum zero-crossing measure is correlated better
to the NMOS score compared to that of the average zero-
crossing. In addition, the N-zero crossing values show an
increasing trend for increasing bit rate. Subsequently, the
NMOS versus the minimum N-Zero crossing features for
edge and nonedge areas over a variety of quality pairs for
Car and Cattle images are shown in Figure 7. The two
zero crossing features follow the similar trend of correlation
with respect to NMOS. Therefore, the results indicate that
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Figure 7: Normalized MOS versus zero-crossing for edge and nonedge areas of different Car and Cattle image pairs. (a) NMOS versus
N-Zero crossing (edge areas, ZCe), (b) NMOS versus N-Zero crossing (nonedge areas, ZCn).

the two zero crossing features (ZCe and ZCn) measures along
with the minimum zero-crossing are more justified than
the average zero-crossing to develop the quality prediction
metric.

3.2. Relative Disparity Measure. To measure disparity, we
use a simple feature-based block matching approach. Many
feature-based approaches are applied for stereo match-
ing/disparity estimation which are discussed in [30]. Here, a
fixed block based difference zero-crossing (DZC) approach
is employed in this work. The principal of the disparity
estimation is to divide the left image into nonoverlapping
8 × 8 blocks with classification of edge and nonedge blocks.

For each 8× 8 block of the left image, stereo correspondence
searching is conducted based on minimum difference zero-
crossing (MDZC) rate between the corresponding block and
up to ±128 pixels of the right image. The disparity esti-
mation approach is shown in Figure 8. Here, zero-crossing
(horizontal and vertical) of a block is estimated according to
Section 3.1. “1,” and “0” indicate zero-crossing (edge) and
nonzero-crossing (nonedge) points, respectively. In order to
reduce computational cost, we restricted the correspondence
search to 1D only (i.e., horizontally) and within ±128 pixels.
Moreover, the stereoscopic images database that we consider
in this research are epipolar rectified images. Therefore, the
displacement between the left and right view of a stereo
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pair is restricted in horizontal direction only. The depth
maps of the two sample stereo image pairs for block size
4 × 4, 8 × 8, and 16 × 16 with searching area ±128 pixels
are shown in Figure 9. Colors in the depth maps that are
indicated by vertical color bars in right are estimated depths
of the image pairs. Subsequently, depth maps of different
symmetric and asymmetric Cattle images are shown in
Figure 10. Figures 9 and 10 show that the performance of
the disparity algorithm is adequate for the block size 8 × 8
with searching areas of ±128 pixels. The effect of different
block size and searching areas on this disparity estimation are
discussed in details in [29]. Although disparity is a measure
of position displacement between the left and right images,
an intensity based DZC rate is determined between the block
of a left image and the corresponding searching block in the
right image as relative disparity in this work.

In order to measure the relative disparity, firstly, the
segmentation algorithm is applied to left image only to
classify edge and nonedge blocks. Secondly, block-based
DZC is estimated in the two corresponding blocks between
the left and right images. Thirdly, we average the DZC rate
values separately for edge and nonedge blocks. Finally, the
values are updated with some weighting factors. If ZCl, and
ZCr be the zero-crossing of a block of left image and the
corresponding searching block of right image, respectively.
The DZC of the block can be estimated by the following
equation:

DZC = ZCl⊕ ZCr, (13)

where the symbol, “⊕” indicates a logical Exclusive-OR
operation. Subsequently, DZC rate (DZCR) is calculated by

DZCR = 1
8× 8

∑
DZC. (14)

For horizontal direction: let ZClh, and ZCrh be the zero-
crossing of a block of left image and the corresponding

searching block of right image in horizontal direction,
respectively. The DZCh of the block are estimated by the
following equation:

DZCh = ZClh ⊕ ZCrh, (15)

Thus, we can calculate DZCh rate (DZCRh) of the 8×8
block by

DZCRh = 1
8× 8

∑
DZCh. (16)

Therefore, the average DZCRh (AZCh) for edge, and
nonedge blocks of the left image are calculated by

AZChe =
1
Ne

Ne∑

e=1

DZCRhe , (17)

AZChn =
1
Nn

Nn∑

e=1

DZCRhn , (18)

where Ne and Nn are, respectively, the number of edge, and
nonedge blocks of the left image.

For vertical direction: similarly, we can calculate AZCve

and AZCvn . Subsequently, the total relative disparity features
for edge, AZCe and nonedge, AZCn areas are estimated by the
following equation:

AZCe = AZChe + AZCve

2
, AZCn = AZChn + AZCvn

2
.

(19)

Finally, the overall relative disparity feature is estimated
by

DZ = AZCw5
e · AZCw6

n (20)

where w5 and w6 are, respectively, the weighting factors of
the disparity features for edge, and nonedge areas. In order
to verify the estimation of the two disparity features (AZCe

and AZCn) the normalized MOS versus the disparity features
for edge and nonedge areas over the different quality pairs
for Car and Cattle images are shown in Figure 11. The
two disparity features also maintained the similar increasing
trend of correlation nature with respect to NMOS. Therefore,
it is indicated that the two disparity features measures are
also justified to develop the prediction metric. Although 3D
depth perception is a complex process, we believe it has a
strong correlation with objects/structural information of a
scene content that is near to the viewers. In order to verify
this statement, we compare three stereoscopic images of
similar scene contents and noticed that the distance of the
near objects/structures to the viewers in second and third
images is decreasing in comparison with the first image that
is shown in Figure 12. Consequently, the depth perceptions
are increasing from the images one to third according to
the viewer’s perception. Eventually, the proposed disparity
feature (DZ) measure is shown in Figure 13 for edge
and nonedge areas within the images. The figure shows
the normalized DZ features for the two different areas of
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Figure 10: Depth maps of distinct symmetric and asymmetric pairs for Cattle images.

the images. The DZ values for edge areas in Figure 13(a)
indicate that the first image’s depth is lower than the second
and similarly, the DZ value of second image is lower than the
third image. Therefore, the increasing trend of DZ features
for edge areas on similar scene contents confirms the human
visual depth perception of the images. Although the DZ
features for edge areas support the depth perception, we also
consider the DZ features for nonedge areas to measure the
relative depth perception of other objects/structures of scene
contents in this algorithm.

3.3. Features Combination. We can combine the artifacts
and disparity features to develop a stereo quality assessment
metric in different way. In order to investigate the best
suitable features combination equation, we studied the
following equations:

Case 1.

S = α(DZ) · B · Z (21)

Case 2.

S = α + β(DZ) · B · Z (22)

Case 3.

S = α(DZ) + β(B) + γ(Z) (23)

Case 4.

S = α(DZ) + βB · Z, (24)

where α, β, and γ are the method parameters. The method
parameters and weighting factors (w1 to w6) are must be
estimated by an optimization algorithm with the subjective
test data. The proposed method performance is also studied
without disparity by the following equation:

S = α + βB · Z. (25)

We consider a logistic function as the nonlinearity
property between the human perception and the physical
features. Finally, the obtained MOS prediction, MOSp, is
derived by the following equation [31]:

MOSp = 4
1 + exp[−1.0217(S− 3)]

+ 1. (26)

Here, Particle Swarm Optimization (PSO) algorithm is used
for optimization [32].

4. Results

In order to verify the performance of our method we
consider the MICT stereo image database (see Section 2).
To use the database, we divide the database into two parts
for training and testing. The training database consists
of five randomly selected reference stereo pairs (from the
total ten) and all of their different combinations of sym-
metric/asymmetric coded stereo images (245 stereo pairs).
The testing database consists of the other five reference
stereo pairs and their symmetric/asymmetric coded ver-
sions (245 stereo pairs), and also there is no overlapping
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Figure 11: Normalized MOS versus Disparity for edge and nonedge areas of different Car and Cattle image pairs: (a) NMOS versus N-
Disparity (edge areas, AZCe) (b) NMOS versus N-Disparity (nonedge areas, AZCn).
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Figure 12: Images with different depth perception based on variation of near objects’ distance: Decreasing distance of near objects (from
images I to III) creates a significant increase of depth perception.

between training and testing. In order to provide quantitative
measures on the performance of the proposed method,
we follow the standard performance evaluation procedures
employed in the video quality experts group (VQEG) FR-TV
Phase II test [33], where mainly pearson linear correlation
coefficient (CC), average absolute prediction error (AAE),
root mean square prediction error (RMSE), and outlier ratio
(OR) between objective (predicted), and subjective scores
were used for evaluation. The evaluation result along with
all above mentioned features combination equations are
shown in Table 1. The table indicates that out of all the
combined equations, (24) (Case 4) provides the highest
prediction performance among others. Consequently, the
proposed method considers (24). The method’s parameters
and weighting factors are obtained by the PSO optimization
algorithm with all of the training images are shown in
Table 2. To measure the performance as well as justification
of the estimated image features of our proposed method we
also consider the following prediction performances:

(1) Methods with disparity:

(i) proposed model (i.e., considering blockiness,
zero-crossing, and disparity) using the features
combining Equation (24);

Table 1: Evaluation results on different features combined equa-
tions with disparity.

Methods
Training

CC AAE RMSE OR

Case 1 0.916 0.907 1.044 0.298

Case 2 0.953 0.332 0.401 0.086

Case 3 0.961 0.286 0.348 0.065

Case 4 (considered) 0.964 0.276 0.336 0.061

Testing

Case 1 0.865 0.918 1.064 0.314

Case 2 0.942 0.339 0.406 0.053

Case 3 0.931 0.348 0.431 0.037

Case 4 (considered) 0.940 0.339 0.413 0.040

Table 2: Method parameters and weighting factors (MOS scale, 1
to 5).

α = 58.064452 β = −51.026118

w1 = 0.036062 w2 = 0.00513 w3 = 0.010634

w4 = −0.026979 w5 = −0.017522 w6 = 0.013169
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Figure 13: Normalized disparity of the images (I, II, and III) for edge and nonedge areas. (a) Edge areas, (b) nonedge areas.

(ii) method considering only blockiness and dis-
parity using the following features combined
equation:

S = α(DZ) + βB. (27)

(iii) method considering only zero-crossing and
disparity using the following features combined
equation:

S = α(DZ) + βZ. (28)

(iv) conventional method with disparity (i.e., con-
sider blockiness, zero-crossing, and disparity
without segmentation) using the features com-
bining Equation (24).

(2) Methods without disparity:

(i) method considering blockiness, and zero-
crossing using the features combine Equation
(25).

(ii) method considering only blockiness by using
the following equation:

S = α + βB. (29)

(iii) method considering only zero-crossing using
the following equation:

S = α + βZ. (30)

(iv) conventional method considering blockiness,
and zero-crossing using (25) without segmen-
tation.

(3) Another method:

(i) method considering the blockiness and zero-
crossing distinctly for the two views of a stereo
pair and measure the quality score of the left

and the right views independently using the
features combining Equation (25), and average
them without disparity, “2D quality mean”
[18].

The evaluation results of all the above mentioned meth-
ods are summarized in Tables 3, 4, and 5. Table 3 shows that
the proposed method’s performances for every one of the
evaluation metrics are quite sufficient both for the training
and the testing datasets. It has also been observed from
the Table 3 that the proposed method provides sufficient
prediction accuracy (higher CC), and sufficient prediction
consistency (lower OR). The result in Table 3 also prove that
the proposed method (i.e., incorporation of the perceptual
difference of image distortions and disparity) demonstrates
superior quality prediction performance compare to the
conventional method with disparity. Tables 3 and 4 also show
that the method performances are superior compared to the
without disparity. Whereas, 2D quality mean performance is
not sufficient even compared to without disparity approach
(i.e., considering only blockiness and zero-crossing) (see
Tables 4 and 5). Although, the incorporation of dispar-
ities measure to the FR stereo image quality assessment
method [9] indicates poor results, our proposed method
(with relative disparity) indicates better result compared
to without disparity (i.e., considering only blockiness and
zero-crossing). It is clear from Tables 3 and 4 that all
methods performances with disparity are superior compared
to without disparity. Therefore, the relative disparity measure
which is considered in our proposed method can be a
significant measure for 3D quality prediction. In order to
understand the significance of estimated image features
(i.e., blockiness and zero-crossing), we consider the above
mentioned methods which used both features, blockiness
and zero-crossing individually with and without disparity.
It is clear from Tables 3 and 4 that the performance of the
method considering only zero-crossing is better compared
to the method considering only blockiness both for with
and without disparity. Therefore, zero-crossing feature is
more significant compared to blockiness feature for quality
prediction. Proposed method’s weighting factors also show
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Table 3: Methods’ evaluation results for training and testing with
disparity.

Methods
Training

CC AAE RMSE OR

Proposed method 0.964 0.276 0.336 0.061

Only blockiness with disp. 0.867 0.529 0.664 0.086

Only zero-crossing with disp. 0.897 0.484 0.578 0.110

Conventional method with disp. 0.903 0.479 0.597 0.114

Testing

Proposed method 0.940 0.339 0.413 0.040

Only blockiness with disp. 0.833 0.537 0.724 0.106

Only zero-crossing with disp. 0.804 0.578 0.707 0.102

Conventional method with disp. 0.881 0.473 0.577 0.127

Table 4: Methods’ evaluation results for training and testing
without (wo) disparity.

Methods
Training

CC AAE RMSE OR

Blockiness and zero-crossing
wo disp.

0.953 0.322 0.401 0.074

Only blockiness wo disp. 0.705 1.037 1.199 0.367

Only zero-crossing wo disp. 0.883 0.515 0.610 0.110

Conventional method wo disp. 0.904 0.530 0.646 0.131

Testing

Blockiness and zero-crossing
wo disp.

0.932 0.349 0.432 0.053

Only blockiness wo disp. 0.705 1.041 1.196 0.359

Only zero-crossing wo disp. 0.814 0.595 0.719 0.114

Conventional method wo disp. 0.854 0.548 0.649 0.159

Table 5: Another method’s evaluation results for training and
testing.

Method
Training

CC AAE RMSE OR

2D quality mean 0.912 0.432 0.55 0.078

Testing

2D quality mean 0.89 0.40 0.534 0.057

the deviance. Weighting factors (w3 and w4) of zero-crossing
are higher compared to weighting factors (w1 and w2) of
blockiness (see Table 2).

The MOS versus MOSp of our proposed method for
training and testing images are respectively shown in Figures
14(a), and 14(b). The symbols “∗” and “+,” respectively,
indicate MOSp points for the databases of training and
testing. Figure 14 confirms that the proposed method’s
overall quality prediction performance is sufficient not only
on known dataset but also on unknown dataset. The MOS
versus MOSp performance of the proposed method is also
shown in Figure 15 distinctly for symmetric and asym-
metric images. Figure 15 shows that the overall prediction
performance is almost equally well for both symmetric
and asymmetric coded pairs. However, the performance

Table 6: Evaluation results comparison on MICT database.

Method
Training

CC AAE RMSE OR

Proposed, NR 0.964 0.276 0.336 0.061

Method, NR [23] 0.966 0.292 0.367 0.069

Method, FR [9] 0.945 0.310 0.381 0.065

2D quality mean, FR [34] 0.779 0.715 0.846 0.261

Testing

Proposed, NR 0.940 0.339 0.393 0.037

Method, NR [23] 0.935 0.350 0.421 0.065

Method, FR [9] 0.929 0.370 0.441 0.082

2D quality mean, FR [34] 0.758 0.722 0.844 0.208

trend is slightly inferior for symmetric pairs compared to
asymmetric pairs. Because, the proposed method takes into
account the highest visual artifacts between the two views.
Subsequently, the highest visual artifacts measures are not
significant in those symmetric pairs who are very low levels
of compression or close to reference pairs. The MOSp points
“∗” and the error bars of ±2 standard deviation intervals of
four different stereo images are shown in Figure 16. Error
bars show the ±2 standard deviation interval of the MOS.
The figure indicates the predictions consistently performed
well in almost similar nature on variety of image contents.
Although, the incorporation of disparities measure to the
FR stereo image quality metrics [9] indicate poor results,
our method with the relative disparity indicates better results
compared to without disparity. Therefore, the local features-
based relative disparity and distortions can be a significant
measure for overall stereoscopic image quality prediction.
In order to estimate computational cost of the proposed
algorithm, we calculate the computing time of the algorithm
on an Intel (R) Core (TM) i3 processor with 2.53 GHz clock
speed and 2 GB RAM accompanied with Windows 32-bit
operating system. Figure 17 shows the average computing
time of stereo images with different resolutions. The average
computational cost, specifically for 640 × 480 pixels stereo
image, of our proposed algorithm is approximately 52 sec
which is sufficient to perform the computation on the
machine configuration.

5. Performance Comparison

In this section, we compare the performance of my proposed
method against our recently published NR model [23]. The
method uses three local features (edge, flat, and texture)
and the MICT database. Our proposed method’s evaluation
results on the same database are shown in Table 6. The
table shows that the performance of our proposed method
is superior compared to the published method both for
the training and testing databases. As a comparison, we
can also compare the performance of my proposed method
against the currently published FR method presented in
[9]. We evaluate the performance of the method on the
same database (MICT database). Table 6 shows that the
performance of our proposed model is better even compared
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Figure 15: Proposed method’s MOS versus MOSp for symmetric and asymmetric coded images.

to the FR method [9]. We want to make another comparison
according to the idea of some researches. Some researchers
claim 2D image quality metric can be used for 3D or stereo-
scopic image quality prediction by averaging the 2D quality
metric for the left and the right views without the disparity
features estimation [18]. We want to point out simple 2D
averaging technique is not suitable for stereoscopic image
quality prediction even if a good quality 2D FR quality metric
is used for quality prediction. According to this idea, we
compare the performance of our proposed method against

the popular FR objective method for 2D quality assessment
[34]. We also evaluate the performance of the method on the
same database. Table 6 shows that the performance of our
proposed model is more better compared to the averaging
method of 2D quality. It is apparent from this result that
the 2D quality mean approach is not enough for 3D quality
prediction. The proposed method’s performance can also be
compared with another recently published FR stereo image
quality assessment [11]. The method is also used the same
MICT database. The FR method’s reported CC on the MICT
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Figure 16: The MOSp performances on texture variety of stereo pairs over the quality range. The predictions points ∗ and ±2 standard
deviation intervals are shown for each stereo pair.

database is 0.97, whereas our proposed NR method CC on
the same database is 0.96. It indicates that even though our
method is NR the prediction performance is very close to
the FR method [11]. Moreover, the FR method converted the
MOS scale 1–5 linearly to the MOS scale 0-1, which is not
truly mapped the subjective scores between the two scales
[35].

In order to extensively verify the performance of the pro-
posed method, we consider another stereo image database.
The database was created by IVC and IRCCyN laboratory,
University of Nantes, France. As the proposed method is

designed for JPEG coded stereo images, we use only the JPEG
coded images from the database. In the database, there are
thirty JPEG coded stereo images for six different reference
images. The images were coded at a wide range of bit rates
ranging from 0.24 bpp to 1.3 bpp. The details of the database
are discussed in [9]. As the database used difference mean
opinion score (DMOS) with different scale (DMOS scale,
0 to 100), it is very difficult to develop a mathematical
relationship between the two different scales (MOS scale:
1 to 5, and DMOS scale: 0 to 100). Although Pinson and
Walf presented a mapping method to convert one subjective
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Table 7: Method parameters and weighting factors (continuous
DMOS scale, 0 to 100).

α = 140.62388 β = −85.924017

w1 = −0.017834 w2 = −0.000617 w3 = 0.019968

w4 = 0.017483 w5 = 0.000042 w6 = 0.00717

scale to another, the performance was not sufficient for
all subjective data sets [35]. Consequently, we estimate the
suitable optimized model parameters and weighting factors
for DMOS scale, 0 to 100 by using the same equations with
different logistic function as follows:

DMOSp(100) = 99
1 + exp[−1.0217(S− 50)]

+ 1. (31)

Therefore, in order to use the database we randomly divide
the database into two parts for training and testing and
also there is no overlapping between training and testing.
The method’s parameters and weighting factors with the
training images are shown in Table 7 for DMOS scale, 0
to 100. The proposed method’s CCs for the training and
testing images are, respectively, 0.93 and 0.91. Subsequently,
the proposed method’s performance can again be compared
with the FR method (e.g., C4 d2: considering better perfor-
mance disparity algorithm, “bp Vision”) [9]. The prediction
performance for all JPEG coded stereo images is shown
in Table 8. The table shows that proposed NR method’s
performance is almost better for the evaluation metrics even
compared to the FR method. It is clear from the table that our
proposed NR method performance is sufficient and better
compared to the published FR method. Therefore, the Tables
6 and 8 confirm that our proposed method performance
is sufficient and better compared to the others recently
published method.

6. Conclusion

In this paper, we propose an NR stereoscopic image quality
assessment method for JPEG coded symmetric/asymmetric
images which used the perceptual differences of local

Table 8: Evaluation results of the comparison on IVC-IRCCYN
laboratory’s database.

Method
JPEG stereo images

CC AAE RMSE OR

Proposed, NR 0.925 7.689 9.612 0.033

Method (C4 d2), FR [9] 0.927 8.610 10.141 0.033

features such as edge and nonedge. Local features based
distortions and relative disparity measures are estimated in
this approach. A popular subjective database is used to verify
the performance of the method. The result shows that the
method performs quite well over wide range of stereo image
content and distortion levels. Although the approach is used
only for JPEG coded stereo images, future research can be
extended to generalize the approach irrespective of any coded
stereoscopic images.
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