237 research outputs found

    Spatiotemporal coding of inputs for a system of globally coupled phase oscillators

    Get PDF
    Copyright © 2008 The American Physical SocietyWe investigate the spatiotemporal coding of low amplitude inputs to a simple system of globally coupled phase oscillators with coupling function g(ϕ)=−sin(ϕ+α)+rsin(2ϕ+β) that has robust heteroclinic cycles (slow switching between cluster states). The inputs correspond to detuning of the oscillators. It was recently noted that globally coupled phase oscillators can encode their frequencies in the form of spatiotemporal codes of a sequence of cluster states [P. Ashwin, G. Orosz, J. Wordsworth, and S. Townley, SIAM J. Appl. Dyn. Syst. 6, 728 (2007)]. Concentrating on the case of N=5 oscillators we show in detail how the spatiotemporal coding can be used to resolve all of the information that relates the individual inputs to each other, providing that a long enough time series is considered. We investigate robustness to the addition of noise and find a remarkable stability, especially of the temporal coding, to the addition of noise even for noise of a comparable magnitude to the inputs

    Higher order approximation of isochrons

    Full text link
    Phase reduction is a commonly used techinque for analyzing stable oscillators, particularly in studies concerning synchronization and phase lock of a network of oscillators. In a widely used numerical approach for obtaining phase reduction of a single oscillator, one needs to obtain the gradient of the phase function, which essentially provides a linear approximation of isochrons. In this paper, we extend the method for obtaining partial derivatives of the phase function to arbitrary order, providing higher order approximations of isochrons. In particular, our method in order 2 can be applied to the study of dynamics of a stable oscillator subjected to stochastic perturbations, a topic that will be discussed in a future paper. We use the Stuart-Landau oscillator to illustrate the method in order 2

    Universal behavior in populations composed of excitable and self-oscillatory elements

    Get PDF
    We study the robustness of self-sustained oscillatory activity in a globally coupled ensemble of excitable and oscillatory units. The critical balance to achieve collective self-sustained oscillations is analytically established. We also report a universal scaling function for the ensemble's mean frequency. Our results extend the framework of the `Aging Transition' [Phys. Rev. Lett. 93, 104101 (2004)] including a broad class of dynamical systems potentially relevant in biology.Comment: 4 pages; Changed titl

    Collective dynamical response of coupled oscillators with any network structure

    Full text link
    We formulate a reduction theory that describes the response of an oscillator network as a whole to external forcing applied nonuniformly to its constituent oscillators. The phase description of multiple oscillator networks coupled weakly is also developed. General formulae for the collective phase sensitivity and the effective phase coupling between the oscillator networks are found. Our theory is applicable to a wide variety of oscillator networks undergoing frequency synchronization. Any network structure can systematically be treated. A few examples are given to illustrate our theory.Comment: 4 pages, 2 figure

    Asynchronous response of coupled pacemaker neurons

    Full text link
    We study a network model of two conductance-based pacemaker neurons of differing natural frequency, coupled with either mutual excitation or inhibition, and receiving shared random inhibitory synaptic input. The networks may phase-lock spike-to-spike for strong mutual coupling. But the shared input can desynchronize the locked spike-pairs by selectively eliminating the lagging spike or modulating its timing with respect to the leading spike depending on their separation time window. Such loss of synchrony is also found in a large network of sparsely coupled heterogeneous spiking neurons receiving shared input.Comment: 11 pages, 4 figures. To appear in Phys. Rev. Let

    Strong Effects of Network Architecture in the Entrainment of Coupled Oscillator Systems

    Get PDF
    Entrainment of randomly coupled oscillator networks by periodic external forcing applied to a subset of elements is numerically and analytically investigated. For a large class of interaction functions, we find that the entrainment window with a tongue shape becomes exponentially narrow for networks with higher hierarchical organization. However, the entrainment is significantly facilitated if the networks are directionally biased, i.e., closer to the feedforward networks. Furthermore, we show that the networks with high entrainment ability can be constructed by evolutionary optimization processes. The neural network structure of the master clock of the circadian rhythm in mammals is discussed from the viewpoint of our results.Comment: 15 pages, 11 figures, RevTe

    Gauge Theory for the Rate Equations: Electrodynamics on a Network

    Full text link
    Systems of coupled rate equations are ubiquitous in many areas of science, for example in the description of electronic transport through quantum dots and molecules. They can be understood as a continuity equation expressing the conservation of probability. It is shown that this conservation law can be implemented by constructing a gauge theory akin to classical electrodynamics on the network of possible states described by the rate equations. The properties of this gauge theory are analyzed. It turns out that the network is maximally connected with respect to the electromagnetic fields even if the allowed transitions form a sparse network. It is found that the numbers of degrees of freedom of the electric and magnetic fields are equal. The results shed light on the structure of classical abelian gauge theory beyond the particular motivation in terms of rate equations.Comment: 4 pages, 2 figures included, v2: minor revision, as publishe

    Reaction-diffusion equations with spatially distributed hysteresis

    Full text link
    The paper deals with reaction-diffusion equations involving a hysteretic discontinuity in the source term, which is defined at each spatial point. In particular, such problems describe chemical reactions and biological processes in which diffusive and nondiffusive substances interact according to hysteresis law. We find sufficient conditions that guarantee the existence and uniqueness of solutions as well as their continuous dependence on initial data.Comment: 30 pages, 14 figure
    corecore