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Random networks of coupled phase oscillators, representing an approximation for systems of coupled
limit-cycle oscillators, are considered. Entrainment of such networks by periodic external forcing applied to a
subset of their elements is numerically and analytically investigated. For a large class of interaction functions,
we find that the entrainment window with a tongue shape becomes exponentially narrow for networks with
higher hierarchical organization. However, the entrainment is significantly facilitated if the networks are
directionally biased—i.e., closer to the feedforward networks. Furthermore, we show that the networks with
high entrainment ability can be constructed by evolutionary optimization processes. The neural network struc-
ture of the master clock of the circadian rhythm in mammals is discussed from the viewpoint of our results.
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I. INTRODUCTION

The study of complex networks has applications in vari-
ous fields including biology and engineering and has at-
tracted growing attention �1,2�. In the last decade, much
progress has been reached in understanding complexity of
network architectures. However, not only the architecture but
also the dynamics taking place in a network is important �3�.
This dynamics determines functions of the networks, related,
e.g., to information processing in the brain �which is a net-
work of neurons� or to the production process in a factory
�which is a network of machines�. Most of the real-world
networks are constructed in such a way that they implement
certain desired dynamical behaviors. Not only the individual
components of a network �such as single neurons�, but also
the network architecture �e.g., connections between neurons�
should be appropriately designed. Thus, it should be ex-
pected that real-world networks have architectures reflecting
their desired dynamical behaviors. If one can extract topo-
logical properties of the networks relevant for their desired
dynamics, this may provide insights into the role of each
topological property from the viewpoint of dynamics and
help to understand the design principles of functional
networks.

In the present study, the focus is on the synchronization of
oscillators coupled to complex networks. Synchronization
plays a crucial role in the functioning of various systems
�4–8�. One of the most intriguing examples is the circadian
�i.e., approximately daily� clock in mammals �9,10�. The
circadian rhythms of the whole body are orchestrated by a
central clock in the brain, called the suprachiasmatic nucleus
�SCN�. This brain tissue is formed by a population of special
neurons, known as clock cells. A single clock cell exhibits
a robust circadian rhythm in its firing rate, and thus each
such cell is a self-sustained oscillator �with oscillations
determined by a regulatory loop in a group of genes at the
single-cell level�. In the SCN, neurons mutually synchronize
their physiological rhythms even in the absence of any

environmental assistance �11�, so that this cell population can
generate collective periodic signals. Additionally, a different
kind of synchronization takes place in the SCN—i.e., en-
trainment to environmental rhythms. �Here and below, we
use the term “entrainment” to describe synchronization to an
external input, distinguishing it from autonomous mutual
synchronization.� The entrainment of the SCN is essential for
the proper functioning of this biological clock. Generally, the
intrinsic period of the circadian rhythm is significantly dif-
ferent from 24 h �in humans, it would typically be 25 h�.
Therefore, it must be tuned to the 24-h period through some
external influences. Moreover, the phase of circadian oscilla-
tions needs to be locked appropriately to the local time. Such
an entrainment process is mediated by the light information
coming from the eyes, which acts as external periodic forc-
ing for the SCN. However, only a distinct subset of neurons
receives and processes this light information, so that the rest
of the population should be indirectly entrained via intercel-
lular communication �see Ref. �9� and references therein�.
There are various types of intercellular communication in-
side the SCN, including communication through several
types of neurotransmitters �10�. Communication through
neurotransmitters goes via chemical synapses of neurons
forming a complex directed network.

With respect to mutual synchronization of oscillators, the
impact of the network architecture has been intensively in-
vestigated in recent years �12–18�. However, only a few
studies have dealt so far with the entrainment �i.e., synchro-
nization to external periodic forcing� of oscillator networks
�19–21�. The objective of the present paper is to identify
principal topological properties that determine the entrain-
ment ability of oscillator networks and to find the depen-
dence of the entrainment ability on these topological proper-
ties. Although the problem is motivated by the SCN, our
objective is more general. Therefore, we use the phase oscil-
lator model, which provides an approximation for a set of
coupled limit-cycle oscillators �6,22�. Because of its analyti-
cal tractability, we can expect that the phase oscillator model
yields general insight into the entrainment phenomena. In an
earlier Letter, a particular phase oscillator model has been
studied and it was found that, in this model, the entrainment
threshold for the coupling intensity between oscillators*Electronic address: kori@nsc.es.hokudai.ac.jp
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increases exponentially with the depth of a network, defined
as the mean forward distance from a pacemaker �i.e., source
of external forcing� to the network nodes �20�. Hence, it was
found that the entrainment is practically only possible for the
shallow networks with low hierarchical organization. Here,
we give all details of the derivations, extend the analysis to
different network models, and demonstrate the universality
of the earlier preliminary results. An additional class of ran-
dom networks is considered, which allows one further to
explore the design principles of entrainable networks. The
optimization of the network architecture with respect to the
entrainment through a dynamical learning process is further
performed.

The article is organized as follows: The model is intro-
duced in Sec. II. Then, we first show numerical results ob-
tained for standard random networks in Sec. III. In Sec. IV,
the model is analytically investigated under a certain ap-
proximation for the network architecture. The comparison
with numerical results is also provided. In Sec. V, a different
class of random networks is introduced—i.e., directionally
biased networks—and it is shown that the entrainment is
strongly enhanced for the networks close to the feedforward
type. In Sec. VI, dynamical evolution of the network archi-
tecture using two kinds of learning algorithms is considered.
The results are discussed, with a special emphasis on the
design principles of biological clocks, in Sec. VII, followed
by main conclusions in Sec. VIII.

II. THE MODEL

We consider a system of N+1 phase oscillators, including
a special element representing a pacemaker. The basic model
is given by a set of evolution equations for the oscillator
phases �i �1� i�N� and the pacemaker phase �0,

�̇i = � +
�

pN
�
j=1

N

Aij���i − � j� + �Bi�̃��i − �0� ,

�̇0 = � + �� . �1�

The network connectivity is determined by the adjacency
matrix A, where its elements Aij are either 1 or 0. Except in
Appendix B, we always consider directed networks, so that
the matrix A is asymmetric in general. The mean degree pN
is the average number of incoming connections per node
�and p is called the connectivity�. The pacemaker �i.e., the
element with i=0� has a different frequency �+�� from
those of the all other oscillators, �. The pacemaker is acting
on the oscillators 1� i�N1, the action being specified by the
coefficients Bi taking 1 for 1� i�N1 and 0 otherwise. The
coupling between elements inside the network is character-
ized by the 2�-periodic coupling function ��x� and the �posi-
tive� coupling intensity coefficient �. In the absence of a
pacemaker, such networks undergo autonomous phase syn-
chronization at the natural frequency � if the coupling is
attracting—i.e., if ���0�	0 �where the prime denotes the
derivative�. The coupling to the pacemaker is characterized

by the 2�-periodic coupling function �̃�x� and the �positive�

intensity coefficient �. We assume that the functions ��x�
and �̃�x� are nonconstant and smooth.

Without loss of generality, our model can be simplified.
By going into a rotating frame, we have �=0. The maxima

of the coupling functions, max � and max �̃, are chosen
equal to unity by properly defining the coefficients � and �.
Moreover, rescaled time t�= t �� and rescaled coupling
strengths ��=� /�� and ��=� /�� are introduced.1After
that, the model takes the form of Eq. �1� with ��=1 and
�=0 �below, we drop primes in the notation for the rescaled
quantities�. Note that, in terms of the original model �1�, an
increase of the rescaled coupling between the elements cor-
responds either to an increase of coupling � or to a decrease
of the relative pacemaker frequency ��.

The presence of a pacemaker imposes hierarchical orga-
nization in the network architecture, which plays a crucial
role in determining the entrainment ability. For any node i,
its distance li with respect to the pacemaker is defined by the
length of the minimum forward path separating this node
from the pacemaker. For example, the elements 1� i�N1
�directly connected to the pacemaker� have distances li=1.
Among the rest elements, the elements receiving connections
from those with distances 1 have distances li=2, etc. Thus,
the whole network is divided into a set of shells, each of
which is composed of oscillators with distance h from the
pacemaker. The shell population Nh is given by the number
of the oscillators with distance h. The depth L of a network is
introduced as

L =
1

N
�
i=1

N

li =
1

N
�

h

hNh, �2�

which is the average distance from the pacemaker to the
entire network. This quantity characterizes how hierarchical
a given network is. Moreover, we classify the types of con-
nections into forward, backward, and intrashell connections,
which are, respectively, connections from the nodes in a cer-
tain shell h to the nodes in the next shell h+1, from the
nodes in a certain shell h to the nodes in the shallower shells
k	h, and between the nodes inside the same shell. We call
the connections coming from a certain node the outgoing
connections of the node and the connections received by a
certain node the incoming connections of the node.

In the analysis of the model, several further assumptions
will be made. The number N1 of elements, directly connected
to the pacemaker, is assumed to be small as compared with
the total size N of the network. The mean degree pN is cho-
sen so large that the networks do not become disconnected

1We assume here ��
0. However, the results in the present pa-
per hold also for ��	0 because of the following reason. The sys-
tem �1� is invariant under the transformation �→−�, ��→−��,

�→−�,����→−��−��, and �̃���→−�̃�−��. It will be turned out
that the entrainment behavior does not depend on the explicit form
of ���� provided that ���0�	0. Therefore, the same entrainment
behavior takes place also for ��	0. However, in this case, the role
of max � is replaced by −min �, so that −min � should be put unity
by properly rescaling �.
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and much smaller than the network size N. We assume
��0�=0. This assumption implies that coupling between con-
nected oscillators vanishes when their phases are synchro-
nized, as is often the case in various systems �e.g., diffusive
or gap-junction couplings�. Moreover, we assume the limit
�→� in the present paper except in Sec. IV B. Under such
an assumption, instead of Eq. �1� we use the following
model:

�i = t for 1 	 i 	 N1,

�̇i =
�

pN
�
j=1

N

Aij���i − � j� for N1 	 i 	 N . �3�

Only in Sec. IV B do we investigate the original model �1� to
obtain the entrainment condition for �.

III. NUMERICAL INVESTIGATIONS FOR STANDARD
RANDOM NETWORKS

We begin our analysis of entrainment phenomena by con-
sidering the important special case of standard random net-
works, also known as Erdös-Rényi �ER� networks �23,24�.
These networks are generated by independently assigning
with probability p for any pair i and j of the network nodes
a connection that leads from the node i to the node j. Hence,
elements Aij of the adjacency matrix A are chosen to be 1
with probability p and 0 otherwise. Note that A is asymmet-
ric in general �representing a directed network�. Only sparse
random networks with a small mean degree pN �N will be
considered.

We numerically investigate the model �3� �corresponding
to the limit �→�� with the following coupling function:

��x� = −
sin�x + �� − sin �

1 + sin �
, �4�

where � is constant. Note that for any � ��0�=0 is 0 and
��x� is normalized such that max ��x�=1. Note also that for
�=0 this coupling function is the same as that used in Ref.
�20�.

Numerical simulations are started with random phases
for the oscillators i
N1. For each oscillator, its effective
long-time frequency �i is computed as

�i =
�i�t0 + T� − �i�t0�

T
, �5�

with sufficiently large T and t0.
Numerical simulations show that the response of a net-

work to the introduction of a pacemaker depends on the
strength � of coupling between the oscillators. When this
coupling is sufficiently large, the pacemaker entrains the
whole network �i.e., �i=1 for any i�. Under entrainment, the
relative phases �i−�0 are locked. As the coupling strength �
is decreased, the entrainment breaks down at a certain thresh-
old value �cr �for �=0; see Fig. 1�. Our simulations show
that, in most cases, synchronization between the first and
second shells is the first to break down and the frequencies of
oscillators in the shells h2 remain equal for any �—i.e.,

�i=� j for i , j
N1. The results for �=0.5 and �=−0.5 are
similar.

Figure 2 displays the thresholds �cr �in the logarithmic
scale� for a large set of networks with the fixed mean degree
pN and different numbers N1 of oscillators in the first shell.
As can be seen, the entrainment threshold �cr may vary
largely for different network realizations even if N1 is fixed.
The results for �=−0.5, 0, and 0.5 are labeled as �A�, �B�,
and �C�. The same set of networks is used for all three values
of �. For a given network, the entrainment thresholds ob-
tained for different values of � are close, implying that the
entrainment threshold does not depend on the particular form
of the coupling function. Each group of networks with a
certain N1 is displayed with its own symbol. Each group is
characterized by a distribution of depths L and generates
therefore a cluster of data points. Correlation between the
entrainment threshold �cr and the network depth L is evident
even within a fixed N1. The distributions inside each cluster
and the accumulation of the clusters yield the dependence
�cr�L� of the entrainment threshold on the network depth.
Remarkably, the observed dependence is well numerically
approximated by the exponential law

FIG. 1. �Color online� Long-time frequencies for various �.
Data obtained for three samples of random networks are plotted
with different symbols. The depths of the networks are L=3.01,
3.33, and 3.45. The lines show the theoretical curves �32� with
�cr=67.5, 125, and 169, respectively. N=100, p=0.1, N1=1, and
�=0.

FIG. 2. �Color online� Dependences of the entrainment thresh-
old on the depth L for a large set of random networks of size
N=100 and pN=10. The coupling function is given by Eq. �4� with
�A� �=0.5, �B� �=0, and �C� �=−0.5. To separate the data sets,
here we have plotted ��cr with �=5, 1, and 0.2, respectively, for
�A�, �B�, and �C�. The lines are the theoretical dependence c��cr,
where �cr is given by Eq. �33� and c=0.60 is a fitting parameter.
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�cr � �1 + pN�L. �6�

The same functional dependence is found for networks of
other system sizes and different average mean degrees pN
�see Fig. 3�. The entrainment thresholds for N=100 and
N=200 can be well fitted by the same function with the same
fitting parameter c, which suggests that the entrainment
threshold depends not explicitly on the system size N, but on
the average degree pN.

Next we consider relaxation to the entrained state. The
relaxation time for each generated network has been mea-
sured as follows. First, we have run a numerical simulation
for a long time starting with a random initial distribution of
phases. If the relative phases �i��i−�0 for all i were
not locked at the end of the simulation �implying that the
network did not become entrained for the chosen coupling
intensity�, such a network has been discarded. Then, the
simulation was repeated starting from the initial condition
�i�t=0�=�i

st+�yi for i
N1, where yi is a random number
independently taken from the uniform distribution within
�0,1�, � is a small coefficient, and �i

st are the relative phases
of oscillators in the entrained state. The time dependence of
the distance D�t���i���i�t�−�i

st	2 has been monitored. The
relaxation time � was defined as the time t at which the ratio
D�t� /D�0� becomes equal to e−1. Figure 4 displays the relax-
ation times � �in the logarithmic scale�, obtained numerically
for a large set of networks and for a fixed coupling strength
�. Again, the exponential dependence on the depth is
evident. This dependence is well fitted by the function

�cr � �1 + pN�L. �7�

There is a divergence of the relaxation time around L=3.7.
This divergence occurs around the region of the depth where
given coupling strength � is close to the entrainment
threshold—i.e., �
�cr�L�. Above this region, entrainment
rarely happens.

The eigenvalues of an entrained state are displayed in Fig.
5. They were obtained by numerically solving the stability
matrix of our model �3�. We have assumed the limit �→�
and perturbations are considered only in the subsystem
i
N1, so that there are N−N1 eigenvalues. The eigenvalue
possessing the maximum real part is denoted by �max. As
seen, the magnitude of the real part of this eigenvalue,
�Re �max�, is much smaller than those of others �which are
distributed around ����. We have preliminarily checked the
eigenvectors and found that the associated eigenvector with
�max corresponds to an approximately identical phase shift of
the whole subsystem i
N1 and the remaining eigenvectors
correspond to relative motions inside the subsystem. This
fact suggests the following relaxation process: Relative

FIG. 3. �Color online� Dependences of the entrainment thresh-
old on the depth L for a large set of random networks. The coupling
function is given by Eq. �4� where �=0. �A� N=200 and pN=10.
The line is the theoretical dependence c�cr, where �cr is Eq. �33�
and c=0.60 �the same as the value used for N=100�. �B� N=100
and pN=6,20. The lines are the theoretical dependence c�cr, where
�cr is Eq. �33� and c=0.67 and 0.45, respectively, for pN=6 and 20.

FIG. 4. �Color online� Dependence of the relaxation time on the
depth L for an ensemble of random networks. The parameters
are N=100, p=0.1, �=0, and �=300. The solid line is the theoret-
ical dependence d� where � is Eq. �28� with �cr=0.6pN�1+ pN�L−2

�same as the theoretical lines in Fig. 2� and d=1.22 is an additional
fitting parameter. The dotted line is the exponential function
�cr /�� �1+ pN�L.

FIG. 5. �Color online� Eigenvalues �divided by �� of the en-
trained state. The parameters are N=100, N1=2, p=0.1, �=0, and
�=300 �the depth of the used network is L=2.86 and the entrain-
ment threshold for this network is found numerically to be �cr


33�. The real part of the maximum eigenvalue is Re��max�−11.
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perturbations inside the subsystem quickly diminish within
the characteristic time scale �−1 and, then, the phase differ-
ences between the oscillators in the subsystem become prac-
tically locked. The relaxation of the phase difference be-
tween the first shell and the subsystem proceeds slowly with
the time scale �Re �max�−1. Such behavior has actually been
observed in our numerical simulations.

The results relating to the relaxation process do not
change qualitatively for different values of � �we have fur-
ther checked them for �=0.5 and �=−0.5�. Note also that
the relaxation time does not depend on the particular form of
small perturbations.

IV. ANALYTICAL INVESTIGATIONS IN THE GLOBAL
TREE APPROXIMATION

In this section, the model is analytically investigated us-
ing the heuristic global tree approximation. First, global tree
networks will be introduced and then their similarity to the
ER networks will be explained. After that, the analytical so-
lution of the entrainment problem for global tree networks
will be constructed. Note that this analytical solution will
hold only in the limit when both pN and N are large.

A. Global tree approximation

A global tree network is a hierarchical network where, in
any level, each oscillator has only one incoming connection
from the higher level and exactly pN outgoing connections
leading to the lower level. Additionally, each oscillator has
exactly pN connections from the last �bottom� shell of this
hierarchical network. No other connections exist, and the
precise connection topology remains arbitrary. An example
of a global tree network with four hierarchical levels is
shown in Fig. 6.

For such networks, shell populations grow
exponentially—i.e., as Nh=N1�pN�h−1—with distance h from

the network origin. The total number H of shells is deter-
mined by the condition �h=1

H Nh=N. The depth of such a net-
work is given by L=N−1�h=1

H hNh=H+O�1/ pN�. Thus, for
pN →�, the depth L coincides with the number of shells, H.
Therefore, H can be approximately replaced by L.

Global tree networks share essential properties with the
ER networks of large size N�1 and high connectivity
pN�1. This similarity is briefly explained below �see Ap-
pendix A for a detailed discussion�. We first consider the
pattern of forward connections of the ER network. By defi-
nition of our model, each node in the first shell receives one
forward connection from the pacemaker. Each node typically
gives pN outward connections. Thus, from the first shell, a
total number of the outward connections is pNN1, on aver-
age. All elements receiving a connection from the first shell
form the second shell of the network. If the number of con-
nections leading from the first shell is much smaller than the
total number N of elements to which they may lead �i.e., if
pNN1�N�, each next outward connection from the first shell
is typically received by a different node in the second shell.
This means that, typically, an element in the second shell
would be linked only to a single element in the first shell, as
required by the tree structure. Considering the third shell, we
can notice again that, if the number N3=N1�pN�2 of outgoing
connections from this shell is small as compared with the
network size N, the tree structure would approximately hold
for this shell too.

Shell populations Nh grow exponentially with the number
h of the shell—i.e., Nh=N1�pN�h−1. The tree structure with
respect to forward connections holds as far as these popula-
tions remain much smaller than the total network size. When
pN is large, it can be shown that only the last two shells have
populations of size O�N� and, thus, the tree structure ap-
proximately holds down to the third last shell. Analyzing
further patterns of backward and intrashell connections in a
large ER network, we notice that the populations of all
shells, except the last of them, are of order o�N� and only the
populations of the two last shells are of order O�N�. There-
fore, each node outside of the last two shells receives back-
ward connections mostly from these last two shells. On av-
erage, the number of such connections is pN. Each node in
the last two shells typically has pN incoming connections
from the last two shells. This large number of connections
between the last two shells strongly facilitates synchroniza-
tion of oscillators inside them, as can be seen in numerical
simulations. Having this in mind, we may merge the last two
shells in the network into a single shell. Once this additional
�empirical� approximation is used, the tree structure is
extended to the entire network, including its last shells.

Thus, in the global tree approximation the ER network is
treated as a network having a tree structure with respect to
forward connections and with the backward connections ar-
riving only from the last network shell. In this network, ev-
ery forward path starting from the pacemaker has a similar
structure, as illustrated in Fig. 7.

When this approximation is used, an analytical solution
can be easily constructed and its properties become more
clear. Therefore, we prefer first to present our analysis using
the global approximation, even if it remains partly empirical.

FIG. 6. �Color online�. An example of a global tree network
�N1=1, pN=2, H=4, and hence, N=15�. Thick solid lines, thin
solid lines, and dotted lines represent, respectively, forward connec-
tions, backward connections, and intrashell connections. Numbers
indicate the hierarchical level of each node. This graph was con-
structed using the PAJEK software package.
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The investigation of ER networks can also be performed
without relying on the tree approximation. While giving
quantitatively better results, this other analytical investiga-
tion is, however, more complicated and, therefore, we give it
separately in Appendix A.

B. Entrained solution

In the considered tree networks, our model �1� can be
written as

�̇i
1 = ��̃��i

1 − t� +
�

pN
�

j

Aij���i
1 − � j

L� ,

�̇i
h =

�

pN
���i

h − �k
h−1� +

�

pN
�

j

Aij���i
h − � j

L� , �8�

where h2, �i
h is the phase of the oscillator i in the shell h,

�k
h−1 is the oscillator giving forward connection to the oscil-

lator i in the shell h, and the summation is taken over all the
oscillator j in the last shell L. Because of the assumed global
tree structure, each oscillator in any particular shell has the
same pattern of connections—i.e., one forward connection
from the previous shell and pN backward connections from
the last shell. Thus, the entrained state of a network with
phase synchronization inside every shell is possible. For such
a state, the entrainment solution problem is reduced into that
in the one-dimensional oscillator array along a forward path
starting from the pacemaker �see Fig. 7�. Putting �̇i=1
�which is the entrainment condition� and �i

h=�h for all the
oscillator i in the shell h, we get the following algebraic
equations:

��̃��1 − t� + ����1 − �L� = 1, �9�

�

pN
���h − �h−1� + ����h − �L� = 1 for h  2. �10�

For large pN, we may linearize ���h−�k� as ���0���h−�k�
for h ,k2 �it will be shown that �2−�L is at most of order
O�1/ pN� in the solution under entrainment, so that this lin-
earization is justified�. We may then solve Eq. �10� from the
last shell upward. For h=L, we get

���L − �L−1� = �−1pN . �11�

Substitution of this into Eq. �10� for h=L−1 results in

���L−1 − �L−2� = �−1pN�1 + pN� . �12�

From now on, the linear approximation is employed. We may
then get the following equation successively from h=L−2 to
h=2:

���h − �h−1� = �−1pN�1 + pN�L−h for h  2. �13�

Substituting Eq. �13� for h=2 into Eq. �9�, we also obtain

�̃��1 − t� =
1 − ����1 − �L�

�
�

1 − � min���x�	
�

. �14�

Note that an explicit expression for �̃��1− t� is not needed.
The existence conditions of the entrained solution are

�̃��1− t��1 and ���h−�h−1��1 for h
2. The former con-
dition is satisfied for ��� �which is our assumption�.
Among the terms ���h−�h−1�, the term ���2−�1� is the
largest one. The solution thus exists if

���2 − �1� � 1. �15�

Therefore, the entrained state of the network is possible only
if the coupling intensity � satisfies the condition ��cr,
where

�cr = pN�1 + pN�L−2. �16�

The result �16� is remarkable. According to it, the cou-
pling threshold �cr is determined exclusively by topological
properties and does not depend on a particular form of the
coupling function. Moreover, it is given only through a com-
bination of pN and L. This fact suggests that the essential
parameters of the system are pN and L rather than N, p, and
N1, in agreement with the previous numerical results
obtained for the ER networks.

From Eq. �16�, �cr for our tree network under consider-
ation is roughly estimated as

�cr � �pN�L−1 � N/N1. �17�

Thus, �cr is a large number for small N1 �as we assumed�.
This property will be used in the derivation of the relaxation
time.

One can verify that �2−�L is at most of order �pN�−1 in
the entrained state by substituting �cr into � in Eq. �13�. Note
also that although the phase differences �h−�h+1 are small in
deeper shells, they should not be neglected when the entrain-
ment threshold is derived, because the phase difference
�1−�2 �which determines the existence condition of the en-
trained solution� is a consequence of the exponential growth
of such small phase differences from the deepest shell
upwards.

C. Stability analysis of the entrained state

To analyze stability of the entrained solution, only the
limit �→� is considered, and thus, the model �3� is used. In
numerical simulations, we have observed that the relaxation
process is characterized by two distinct time scales: the first
one characterizes fast relaxation inside the subsystem i
N1
and the other corresponds to slow relaxation in the phase
difference between the first shell and the subsystem. In this

FIG. 7. Schematic representation of the network structure along
a forward path in the global tree approximation. Each circle with a
number h is an oscillator of the shell h. Each right arrow and each
left arrow represent, respectively, a forward connection and a pN
backward �or intrashell� connection.

HIROSHI KORI AND ALEXANDER S. MIKHAILOV PHYSICAL REVIEW E 74, 066115 �2006�

066115-6



section, we first investigate the internal stability of the sub-
system. Then, taking advantage of the separation of time
scales, we heuristically construct the effective dynamical
equation of the whole subsystem.

We consider small perturbations for phases in the en-
trained state—i.e., �i

h=�h+��i
h where ��i

h is a small pertur-
bation. Because of the assumption �→�, we put
��i

1=0—i.e., �i
1=�1= t. The model �8� for h2 then gives

��̇i
h =

�

pN
����h − �h−1����i

h − ��k
h−1�

+
�

pN
�

j

Aij����h − �L����i
h − �� j

L� . �18�

Because �h−�L=O�1/ pN�, we approximate ����h−�L�

���0�. In addition, because of the large number pN of
connections from the last shell, we may approximate

1

pN
�

j

Aij�� j
L 


1

NL
�

j

�� j
L � ��L. �19�

Using these two approximations, Eq. �18� reduces to

��̇i
h =

�

pN
����h − �h−1����i

h − ��k
h−1� + ����0����i

h − ��L� .

�20�

Since the first term is negligibly small for large pN for any
shell h2, Eq. �20� is further approximated as

��̇i
h 
 ����0����i

h − ��L� . �21�

Thus, in our approximation, all eigenvalues associated with
the relative motion inside the subsystem are degenerated into

� = ����0� , �22�

with degeneracy N−N1−1. The dynamical equation �21� de-
scribes the fast relaxation inside the subsystem: oscillators
quickly relaxes to the average perturbation ��L in the last
shell—i.e., �i

h→�h+��L. After this fast relaxation, the phase
differences inside the subsystem are almost locked.

Now we heuristically construct the dynamical equation
for the phase difference between the first shell and the sub-
system. We take the coordinate of the subsystem on its
surface—i.e., the phase of the second shell—defined as
�=�2+��L. Because the total external force applied to the
subsystem is given by N2����− t� / pN=N1����− t�, the
effective dynamical equation for the surface � reads

Ne�̇ = N1���� − t� . �23�

Here, the effective size Ne of the whole network is deter-
mined by the condition that �=�2 when the subsystem is

entrained �i.e., �̇=1�. From this condition, comparing Eq.
�13� for h=2 and Eq. �23�, we obtain

Ne = N1�cr. �24�

Thus, from Eqs. �23� and �24� the last eigenvalue is found to
be

�max =
�����2 − �1�

�cr
. �25�

The eigenvector of �max corresponds to the identical phase
shift for all the oscillators i
N1.

For the phase difference �2−�1, there are at least one pair
of steady solutions, one of which always satisfies ����2

−�1�	0. Thus, provided that ���0�	0, a stable entrained
solution exists for �	�cr. This implies that the entrainment
breakdown occurs only via the disappearance of the solution
at �=�cr.

Because �cr is a large number for small N1 �see Eq. �17� �,
the time scales are well separated—i.e., ��max � � ���.
This fact justifies the approximation employed in this sub-
section. In addition, the relaxation time against any general
perturbation is thus given simply by

� = ��max�−1 = −
�cr

�����2 − �1�
. �26�

Hence, in general, the relaxation time depends on the explicit
form of the coupling function, being different from the case
of the entrainment threshold. Nevertheless, the dependence
on L is approximately the same as �cr in the region of L
where ����2−�1� does not vary much with L.

For the special case ��x�=−sin x, Eq. �25� reduces to

�max = −
��2 − �cr

2

�cr
. �27�

The relaxation time is thus

� =
�cr

��2 − �cr
2

. �28�

Because �cr increases with L, �cr eventually coincides with �
at certain critical L, which results in the divergence of �.
In the other region of L, the dependence of the relaxation
time on the depth L is approximately the same as �cr—i.e.,
exponential.

D. Below the entrainment threshold

The dynamical behavior just below the entrainment
threshold is considered. We again choose the limit �→�.
Because of the property ��max � � ���, we only need to con-
sider the dynamics of the subsystem, Eq. �23�. We introduce
the slow mode x��− t and the bifurcation parameter
����−�cr� /�cr. Substituting them into Eq. �23�, we obtain

ẋ = �1 + ����x� − 1. �29�

Expansion of ��x� up to the second order around its
maximum x=xmax yields

ẋ = � +
�max�

2
�x − xmax�2 + higher orders, �30�

where �max� 	0 is the second derivative of ��x� at x=xmax.
The steady solution of x �corresponding to the entrainment�
thus disappears via a saddle-node bifurcation at �=0, and x
oscillates with the negative frequency �x for �	0. This
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frequency is found through the integration of Eq. �30�:

2�

�x
= 

0

2� dx

� + �max� �x − xmax�2/2
+ O��� , �31�

followed by �x=−�2� /�max� . Hence, the effective frequency
�i of each oscillator in the subsystem �i
N1� for �	0 is

�i = 1 −� 2�

�max�
+ O��� . �32�

E. Comparison with numerical results

The analytical results obtained under the global tree ap-
proximation are compared with the numerical results ob-
tained for the ER networks. The theoretical curves plotted in
Fig. 1 correspond to the function �32� for appropriate values
of �cr, showing excellent agreement with the numerical data
for � close to �cr, as expected. In Figs. 2 and 3, we display

�cr = cpN�1 + pN�L−2, �33�

where c is a fitting parameter added to our theoretical depen-
dence �16�. As already noticed in Ref. �20�, although the
principal dependence on the depth, �1+ pN�L, is correctly re-
produced by the global tree approximation, the coefficient is
somewhat different. We have thus introduced the fitting pa-
rameter c. As seen in Figs. 2 and 3, the principal dependence
on the depth obtained for the tree network agrees excellently
with the numerical results obtained for the ER networks.
Note that the theoretical dependence, analytically derived di-
rectly for the ER network in Appendix A, agrees well with
numerical data without any fitting parameter. For the relax-
ation time, taking into account the correction for �cr, we use
instead of Eq. �28� the following function:

� = d
c�cr

��2 − �c�cr�2
, �34�

where the value of c is obtained by numerical fitting for the
entrainment threshold and d is an additional fitting param-
eter. As seen in Fig. 4, the function �34� fits very well to
numerical data. In Fig. 5, real parts of the eigenvalues except
�max are scattered around �, as expected from Eq. �22� �note
that ���0�=1 for �=0�. Putting �=300 and �cr=33 into Eq.
�27�, we obtain �max
−9.0, which is close to the numerical
result shown in Fig. 5 ��max
−11�.

V. ENTRAINMENT IN DIRECTIONALLY
BIASED NETWORKS

We can understand by looking at Eq. �10� why entrain-
ment is difficult in the networks with larger depths. The first
term on the left side in the equation describes the force of the
forward connection. Its sign is positive, so that it contributes
to the entrainment. On the other hand, the second term de-
scribes the force from the backward connections, whose sign
is negative. By moving this second term to the right side, it is
seen that it essentially increases the frequency to which the
oscillators synchronize. In other words, the backward

connections act as a load for the entrainment. Moreover, the
number �pN� of backward connections is much larger than
the number �1� of forward connections. Thus, to compensate
such a strong unbalance, the phase difference associated with
the forward connection ��h−1−�h� needs to be much larger
that associated with the backward connections ��h−�L�. The
effect accumulates exponentially along a forward path of the
length L starting from the pacemaker and ending at the last
shell. This accumulation results in the exponential growth of
the phase difference from the last shell upwards and, thus,
the exponential dependence of the entrainment threshold on
the depth L. Hence, due to the large number of backward
connections, the entrainment is very difficult for networks
with large depths.

It is thus expected that the entrainment threshold
decreases significantly for networks that are closer to the
feedforward architecture �i.e., to a network without backward
connections�. This is indeed demonstrated below using a
special class of random networks which we call directionally
biased networks. To construct a directionally biased network,
we first generate a directed ER random network and choose
N1 nodes as the first shell. Then, we redefine its backward
connections. Namely, for every backward connection, we
decide to retain it with probability � or delete it otherwise.
We call � the backward connectivity of the network. Note
that a directed ER network corresponds to �=1 and the
feedforward network is obtained for �=0.

To solve the entrainment problems for such networks, the
same approximations as in Sec. IV are applied. The global
tree approximation for the forward connection pattern can be
used. Furthermore, it can be assumed that all backward con-
nections come from the last shell and that the number of such
connections received by a oscillator is �pN. The former ap-
proximation is applicable when pN is large, and the latter is
applicable when �pN is large. Thus, we require that �pN is
large. Under this condition, the same linear approximation as
in Sec. IV can be used, because the phase difference �2−�L
turns out to be at most of order ��pN�−1. For simplicity, we
further assume �→� also in this section. Then, the en-
trained solution for the approximated network is found by
solving the algebraic equations

�

pN
���h − �h−1� + �����h − �L� = 1 for h  2. �35�

We obtain

���h − �h−1� = �−1pN�1 + �pN�L−h for h  2, �36�

�cr = pN�1 + �pN�L−2. �37�

The stability analysis is performed in the same manner,
leading to

� =
pN�1 + �pN�L−2

�����2 − �1�
. �38�

Hence, both the entrainment threshold �cr and the relaxation
time � decrease dramatically as the backward connectivity �
gets smaller. The role played by � is more significant for the
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networks with a higher hierarchical organization �i.e., with a
larger depth L�.

The employed linear approximation is applicable only for
large �pN. For �=0, the model is, however, exactly solvable
without the linear approximation. Since there are no back-
ward connections in this case, perfect phase synchronization
inside each shell is possible. Consequently, we get Eqs. �36�
and �37� also for �=0. Trivially, the phase difference
�h−1−�h�� between the neighboring shells is constant for
h
2, given by the relation ��−��= pN /�. The stability
analysis of this solution is straightforward. The eigenvalue is
����−�� / pN �multiplicity N−N1�. For �
�cr, there is at
least one pair of solutions, one of which satisfies ���−��
	0. Therefore, for any �, there is always a stable solution
for �
�cr. Note that this state has a constant phase gradient
and can thus be described as a traveling wave.

Numerical results for directionally biased random net-
works are displayed in Fig. 8. For the entrainment thresholds
�Fig. 8�A��, the theoretical dependence �1+�pN�L fits well
the numerical data. For the relaxation time �Fig. 8�B��, the
theoretical dependence �1+�pN�L also fits well the numerical
data, except for �=0 where a linear function fits best. This
linear dependence is natural because the solution is wave like
and it is thus expected that the time necessarily to transmit
information is proportional to the system length �i.e., to the
depth L�. Note that the entrainment breakdown occurs near
L=4 for �=1.

Similar dependences can be obtained for the weighted net-
works. To construct them, we first generate an ER network
and introduce connections from the pacemaker. We then put

Aij =� for all existing backward connections, while keeping
the weights of other connections equal to either 0 or 1. For
such networks, we also obtain Eqs. �36�–�38� because the
same approximations are applicable.

VI. EVOLUTIONARY OPTIMIZATION

So far, the relationship between the entrainment threshold
and the network depth has been established only for the spe-
cial kinds of random networks. Therefore, it is natural to ask
whether it also holds for arbitrary complex networks. Obvi-
ously, we cannot answer it by investigating all possible types
of complex networks because their number is too large. In-
stead, an alternative way is chosen: we shall construct net-
works with lower entrainment thresholds �and thus better
entrainment ability� through an optimization process starting
from an arbitrary network architecture and analyze changes
of their topological properties in the course of evolution. If
these networks actually evolve towards being shallower and
closer to a feedforward type, one can conclude that both
properties are generally essential for good entrainment
ability.

During the evolution, several topological properties shall
be monitored. One of them is the depth L, which has already
been defined. The other property is the backward connectiv-
ity � defined as the ratio of the total number of backward
connections at each trial and that of the initial network. For
comparison, we also introduce the forward connectivity �,
given by the ratio between the total number of forward con-
nections in each trial and that of the initial network. The total
number of outgoing connections from the first shell, denoted
by nout, shall also be monitored.

Two types of optimization algorithms will be employed.
The first one is the straightforward optimization where the
network structure evolves in such a way that the mean fre-
quency of the whole network becomes closer to that of the
pacemaker. In the second algorithm, each oscillator selects
its incoming connections in such a way that its own fre-
quency becomes higher. It will be shown that, for both kinds,
the evolving network improves its ability to become en-
trained and, at the same time, indeed becomes less hierarchi-
cal and closer to feedforward networks. Note that, concern-
ing biological clocks, the first and second algorithms could
imitate, respectively, the evolution process of the neural net-
work of the SCN for a species and the growing process of the
neural network for an individual. A more biological algo-
rithm �or learning process� has been employed elsewhere and
resulted in similar results �25�.

The initial setup is common for both types. The process
starts from a random ER network. We put �i�t�= t for
i�N1. Throughout the evolution process, the connection pat-
tern from the pacemaker is maintained, so that the first shell
is always composed of the oscillators i�N1. The coupling
strength � is fixed far below the entrainment threshold for
the initial network. Thus, all the oscillators except in the first
shell initially have frequencies close to their natural ones.

The first evolution algorithm. A numerical simulation is
run starting from random initial phases. The long-time fre-
quency ���= �TN�−1�i��i�2T�−�i�T��, averaged over the

FIG. 8. �Color online� Dependences of �A� the entrainment
threshold and �B� the relaxation time on the depth for an ensemble
of directionally biased networks. The solid lines are the exponential
functions proportional to �1+�pN�L. The dashed line is a linear
function aL+b with appropriate fitting parameters a and b. Other
parameters are �=600, pN=10, and �A� N=100 and �B� N=400.
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whole population and for sufficiently long time T, is deter-
mined. Then, the adjacency matrix A is mutated. This is
done by “rewiring”: We choose randomly an existing di-
rected link �Aij =1� and eliminate it �Aij→0� and, then,
choose randomly a missing link �Ai�j�=0 where i�� j�� and
add a new connection there �Ai�j�→1�. After the mutation, a
numerical simulation is again run starting from new random
initial phases and the new frequency ���� is determined. If
���� is closer to 1 than ���, the mutation is accepted. Other-
wise, the network is resetto its structure before the mutation.
The iteration process is repeated until the long-time
frequency ��� becomes equal to unity.

A typical dependence of the average frequency and two
different topological properties during an evolution is shown
in Fig. 9�A�. The tendency to decrease both the depth L and
the backward connectivity � is evident. In most evolutions
where the average frequency ��� has increased, a decrease in
L and/or � was observed. In Fig. 9�B�, the evolution of two
other topological properties is shown. We see that the corre-
lation between the feedforward connectivity � and the mean
frequency ��� is weak. An increase in nout indicates the
emergence of a hub �i.e., of a node with a large number of
outgoing connections�, which strongly contributes to de-
creasing the depth L. It is worth noticing that an increase in
��� does not necessarily imply an increase in nout. Appar-
ently, the entrainment ability relies on finer properties of the
network architecture, best characterized by L and �. In our
numerical simulations, we have tried several sets of param-
eter values and several different initial random networks,
always obtaining qualitatively the same results.

The second evolution algorithm. For each iteration step,
an oscillator i is randomly chosen. A numerical simulation
is run and the long-time frequency of this oscillator,
�i= ��i�2T�−�i�T�� /T with sufficiently large T, is deter-

mined. Then, a structural mutation of the network is intro-
duced. We choose randomly one existing incoming link of
this oscillator �Aij =1�, delete it �Aij→0�, then choose ran-
domly a missing link to this oscillator �Aij�=0 where j�� i�,
and add a new link there �Aij�→1�. After the mutation, a
numerical simulation is repeated and the new frequency �i�
of the oscillator i is measured. The mutation is accepted if
�i�
�i and rejected otherwise. At the next step, we again
randomly choose an oscillator and repeat the same proce-
dure. Thus, in this evolutionary process, the mutation is done
according to the individual activities of the oscillators. Note
also that, in this evolution algorithm, the total number of
incoming connections for each oscillator is maintained con-
stant.

Figure 10�A� displays the typical dependence of the aver-
age frequency and two topological properties of the networks
during a single evolution. Although the average frequency
��� of the whole population does not always increase in each
iteration step, the network architecture changes during the
evolution similar to what has been found for the first algo-
rithm, towards the networks of smaller depth L and smaller
backward connectivity �. In Fig. 10�B�, the emergence of a
hub and weak correlation between ��� and � are seen, simi-
larly to the results in the first algorithm. It should be empha-
sized that, in the second algorithm, a globally coordinated
network architecture emerges solely through the local opti-
mization rule. The reason is that the oscillators are mutually
frequency synchronized in most cases and therefore their in-
dividual frequencies usually coincide with the average fre-
quency of the whole population. Hence, the second
algorithm also works similarly to the first one.

In both types of algorithms, our numerical results show
that the development of the entrainment ability is followed
by decreases in the depth L and the backward connectivity �,
suggesting that these two topological properties are the pri-
mary factors in determining the entrainment ability. It can be
also noticed that the evolving networks tend to develop
strong heterogeneity in their outgoing degrees. The depth of
an evolving network becomes smaller via an increase in the

FIG. 9. �Color online� Evolution process under the first algo-
rithm. Parameter values are N=100, p=0.1, N1=1, and �=20. The
depth of the initial random network is L=3.43. �A� The solid line is
the long-time frequency ��� averaged over the whole network.
The dashed and dotted lines are, respectively, the backward connec-
tivity � and the depth L. �B� Two other topological quantities are
plotted. The solid and dotted lines are, respectively, the total num-
ber nout of outgoing connections from the first shell and the forward
connectivity �.

FIG. 10. �Color online� Evolution process under the second al-
gorithm. The depth of the initial random network is L=3.22, corre-
sponding to �cr
100. Parameter values and the definitions of the
exhibited lines are the same as in Fig. 9.
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outgoing degrees of nodes in the shallow shells. In this
manner, hubs of outgoing connections are formed. On the
other hand, the development of small backward connectivity
is mainly due to a decrease of the outgoing degrees in the
deep shells. Consequently, the heterogeneity of outgoing de-
grees tends to be larger as the optimization process goes on.2

Many real-world networks, including scale-free networks,
are known to have strong heterogeneity in their degrees �1�.
Our results suggest that evolving networks with good
entrainment ability also become strongly heterogeneous.

VII. DISCUSSION OF BIOLOGICAL ASPECTS

As already mentioned in Sec. I, our study is motivated by
the SCN, the tissue orchestrating the circadian rhythms of
the whole body in mammals. The SCN is a network of self-
sustained oscillators, and each neuron is expected to be de-
scribed by a limit-cycle oscillator. No matter how these neu-
rons are coupled �including pulse coupled�, such a network is
generally approximated by phase oscillators coupled through
a function of the relative phase difference between each con-
nected pair if coupling is sufficiently weak �6,22,26–28�. We
thus expect that it is appropriate to model the SCN by
coupled phase oscillators. In this section, we discuss the neu-
ral network structure of the SCN and its possible roles from
the viewpoint of the results of the present investigations.

The SCN is anatomically organized into two groups, often
called the “core” subdivision and the “shell” subdivision
�see, e.g., Ref. �10��. Only the core subdivision receives
photic input and, thus, this part corresponds to the first shell
in our model. The shell subdivision corresponds to the rest of
the shells in our model. Within and between the core and
shell subdivisions, there are several types of intercellular
communications which influence circadian oscillations �10�.
The pathways �i.e., the network structure� of each type of
communication may be different.

From the viewpoint of our results, if the SCN is con-
structed so as to reach the best ability for entrainment, the
network architecture should be feedforward. This means that
the unidirectional connectivity from the core subdivision to
the shell subdivision should be found. This is indeed the case
for communication via VIP �vasoactive intestinal polypep-
tide�, which is a neurotransmitter released only by neurons in
the core subdivision. VIP is one of the leading candidate
factors for the synchronization pathway inside the SCN �29�.
However, VIP is not the only one communication agent.
Communication via GABA ��-aminobutyric acid� is further
possible for almost all neurons in the SCN and seems to play
a crucial role in achieving synchronization between the core
and the shell subdivisions �30�. The GABA connection pat-
tern is not feedforward but bidirectional between these sub-
divisions. However, remarkably, it has been conjectured
from experimental studies that coupling from the shell to the
core is weaker than in the other direction �30�, suggesting
that the network would effectively be close to feedforward
one also with respect to the GABA communication.

It is known, moreover, that, although the response of the
core structure to a sudden phase shift in the environment is
very fast, the response of the shell subdivision to such phase
shifts is significantly slower �30,31�. From the viewpoint of
our results, it can be conjectured that the slow response of
the shell subdivision is due to the more hierarchical, non-
feedforward organization of neurons inside this subdivision.
As we have seen, if a network is hierarchical, the response
can become very slow even if the first shell is strongly
connected to the environment.

It is interesting to ask why the shell subdivision, coupled
to the core, actually exists in the SCN and why this subdivi-
sion could be more hierarchically organized. One reason
may be that such an organization is needed to keep the
autonomy of the biological clock. The SCN must be capable
to synchronize to the environmental rhythm, but on the other
hand, should not be too sensitive to the environmental
information. In other words, the SCN must retain both au-
tonomy and adaptivity in a good balance. The hierarchical
organization and directionality of the network architecture in
the SCN could be useful to reconcile these contradicting
requirements.

VIII. CONCLUSIONS

Our main result for the random ER networks and the ran-
dom directionally biased networks is schematically illus-
trated in Fig. 11, where � is the nonrescaled coupling
strength—i.e., � in the original model �1�. The entrainment
occurs in a gray region. For the ER networks, this region
becomes exponentially smaller for the networks of higher
hierarchical organizations �i.e., with larger depth L�. Thus, in
practice, the entrainment is possible only for shallow net-
works. For the directionally biased networks, the entrainment
region becomes significantly enlarged for the smaller back-
ward connectivity � even if the networks are hierarchical.
The feedforward network is the best one for the entrainment.
The relaxation time to the entrainment has approximately the
same dependence on the network architecture as that of the
entrainment threshold. These results are general and hold for
a large class of coupled phase-oscillator systems �and thus
also of weakly coupled limit-cycle oscillator systems� with
attracting couplings. The networks with such topological
properties are shown to emerge naturally through different

2Although there is only little similarity in the models, the evolu-
tionary process described in Ref. �33� has shown a similar result.

FIG. 11. Schematic representation of the entrainment window,
inside which the entrainment occurs. The slopes of the edges of the
entrainment window for �
0 and �	0 are proportional to max �
and min �, respectively.
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kinds of evolutions aimed at increasing the entrainment
ability.
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APPENDIX A: ANALYTIC INVESTIGATIONS WITHOUT
THE GLOBAL TREE APPROXIMATION

In Sec. IV, to solve the entrainment problems we have
used the heuristic global tree approximation for the random
ER networks. By a different method, entrainment problems
can be solved directly for the ER network of large size N�1
and large degree pN�1. Although this systematic derivation
is more accurate, it is also more technical and, therefore, we
have preferred to present first, in the main part of the article,
the analysis based on the global tree approximation. The re-
sults of this derivation agree with what we have found before
in the global tree approximation and can be viewed as
providing further support for it.

We begin by estimating the number mhk of incoming con-
nections leading from all nodes in the kth shell to a node in
the hth shell. The network pattern of forward connections is
first considered; i.e., mh,h−1 for h1 is estimated. By defini-
tion, there are N1 nodes in the first shell, each of which
receives only one forward connection �coming from the
pacemaker�. We thus have m1,0=1. The expected total num-
ber of outgoing connections from the nodes in the first shell
is N1pN because each node gives typically pN outgoing con-
nections. If pNN1�N, every outgoing connection almost
surely connects to each individually different node outside
the first shell. Therefore, in a good approximation, the num-
ber N2 of nodes in the second shell is N1pN and each node in
the second shell receives only one forward connection—i.e.,
m2,1=1. The same property holds up to a certain shell h*,
where for the first time the total number of outgoing connec-
tions from the shell becomes of the order O�N� or larger—
i.e., pNNh*−1=o�N� and pNNh* O�N�. We thus have
Nh=N1�pN�h−1��N� and mh,h−1=1 for h�h*. In other
words, the network pattern of forward connections takes a
tree structure in a good approximation up to the shell h*. The
population Nh*+1 of the next shell is of the order of O�N�.
Since �h�h*Nh is of o�N�, almost all outgoing connections
from the shell h* connect to nodes in the shell h*+1. There-
fore, the expected number of incoming connections from the
shell h* to a node in the shell h*+1 is pNNh* /Nh*+1
� m̄h*+1,h*. The statistical deviation from this expected num-
ber may not be neglected because m̄h*+1,h* is not a large
number in general. Since Nh*+1=O�N�, every node in the
network almost surely receives connections coming from the
shell h*+1, which implies that the rest of the nodes belong to
the shell h*+2. The expected number m̄h*+2,h*+1 of forward

connections to a node in the last shell is pNh*+1. This is a
large number of O�pN�, and thus the statistical derivation
from the number can be neglected—i.e., mh*+2,h*+1= pNh*+1.

Since L=�hhNh /N
��h*+1�Nh*+1+ �h*+2�Nh*+2	 /N
h*

+1+Nh*+2 /N, we get

h* = �L� − 1, �A1�

where �L� is the integer part of L. According to the result in
�32�, the depth of the ER random network with large size N
is estimated as

L 

ln�N/N1� − �

ln�pN�
+ 1.5, �A2�

where �
0.5772 is the Euler constant.
Next, the structure of backward and intrashell connections

is considered. A node in the shell h typically receives pNk
connections from nodes in the shell k �kh�. The numbers
of such connections from the last two shells are of O�pN�.
Relative statistical deviations from these numbers are of or-
der �pN�−1/2 and thus negligible. We thus obtain mh,k= pNk

for k=h*+1 ,h*+2, and h�k. The number of backward con-
nections from other shells is of o�pN� and thus negligible;
i.e., we approximate mh,k=0 for h	k�h*.

Our estimation for the network structure is summarized
as follows. The shell populations Nh are N1�pN�h−1 for
1�h�h* and of order O�N� for h=h*+1 and h*+2. The
number mh,k of incoming connections of a node in the shell h
from the nodes in the shell k is given by mh,h−1=1 for
1�h�h* and by m̄h*+1,h* = pNNh* /Nh*+1, mh*+2,h*+1= pNh*+1,
mhk=0 for k	h−1 �by definition�, mh,k= pNk for
k=h*+1 ,h*+2 and h�k, and mh,k=0 for h	k�h*.

Now we solve the entrainment problem for the network
under consideration. We assume that the phase difference
�i−� j between any pair of oscillators in the shells h2 is so
small that we may linearize as ���i−� j�=���0���i−� j�.
This assumption is justified later �it will be shown that
��i−� j � 	O�1/ pN��.

The dynamics in the shells h
1 is considered. We denote
the average phase of the oscillators inside the last two shells
h*+1 and h*+2 by �edge. Because the number of connections
from the last two shells is large, we may approximate the
coupling from those shells as

1

pN
�

j

Aij���0���i − � j� 
 ���0���i − �edge� , �A3�

where j denotes the oscillators inside the last two shells.
Since every oscillator in the shell h�h* has effectively the
same number of incoming connections from each individual
shell, a state with phase synchronization inside each shell
h�h* exists. We denote the phase of the oscillators in the
shell h by �h. Under entrainment �i.e., �̇i=1�, the phases of
such a state can be found as a solution of algebraic equations

�

pN
���0���h − �h−1� + ����0���h − �edge� = 1, �A4�

where 2�h�h*. The phase �i
edge of the oscillator i inside

the last two shells h*+1 and h*+2 is found by
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�

pN
�

j

Aij���0���i
edge − � j

h*
� + ����0���i

edge − �edge� = 1.

�A5�

Averaging Eq. �A5� for all the oscillators inside the last two
shells, we get

�Nh*

N
���0���edge − �h*� = 1. �A6�

Note that because of the strong internal coupling inside the
last two shells, the oscillators inside the last two shells are
almost phase synchronized—i.e., �i

h
�edge for h=h*+1 and
h*+2. From Eqs. �A4� and �A5�, for 2�h�h* we obtain

�edge − �h* =
N

���0��Nh*
,

�h − �h−1 =
pN

���0��
�1 + pN�h*−h�1 +

N

Nh*
� ,

���2 − �1� =
pN

�
�1 + pN�h*−2�1 +

N

Nh*
� . �A7�

The existence conditions of the entrained solution are

�̃��1−�0��1 and ���2−�1��1. The former is satisfied for
sufficiently large � �which is our assumption�. Thus, for a
given network, the existence condition for the entrained
solution is ���cr, where

�cr = �−1pN�1 + pN�h*−2�1 +
N

Nh*
� . �A8�

Substituting �cr into � in Eqs. �A7�, one can confirm that the
phase difference �2−�edge is actually at most of O�1/ pN�, so
that the linear approximation is justified for large pN.

In Eq. �A8�, because h* increases with the depth L, the
entrainment threshold approximately increases exponentially
with the depth L, although the effect of the last term
1+N /Nh* is unclear. We thus employ further approximations
and express the entrainment threshold �A8� as a function of
the depth L and the mean degree pN. From Eq. �A2�, the
network size can be expressed as N=e�N1�pN�L−1.5. Together

with the relations Nh* =N1�pN�h*−1 and N�Nh*, the last term
of Eq. �A8� is approximated as

1 + N/Nh* 
 N/Nh* 
 e��pN�L−h*−0.5. �A9�

Because 0.5�L−h*−0.5	1 from Eq. �A1�, we may further
approximate it as

e��pN�L−h*−0.5 
 e��1 + pN�L−h*−0.5 + C , �A10�

where C is a small number of order �pN�L−h*−1.5. Substituting
Eq. �A10� into Eq. �A8� and neglecting the second term C
which is much smaller than the first term, we get

�cr 
 e�pN�1 + pN�L−2.5. �A11�

This entrainment threshold agrees well with numerical data
without any fitting parameter. Dividing Eq. �A11� by Eq.

�16�, we obtain e��1+ pN�−0.5�c, which is about 0.67, 0.54,
and 0.39, respectively, for pN=6, 10, and 20. These agree
well to c=0.67, 0.60, and 0.45 obtained by numerical fitting
�see Fig. 3�.

APPENDIX B: ENTRAINMENT THRESHOLD
FOR BIDIRECTIONAL NETWORKS

So far, we have considered only directed networks. How-
ever, similar exponential dependences are found also for bi-
directional networks. In this appendix, we provide estimation
of the entrainment threshold for bidirectional ER networks.
Such networks are generated as follows. Independently of
any i and j	 i, we set Aij =1 with probability p and Aij =0
otherwise and put Aji=Aij. Self-connections are forbidden, so
that Aii=0.

The entrainment threshold is obtained in a similar way as
in Sec. IV. We apply a global tree approximation in forward
connections �which implies that the pattern of backward con-
nections also take the same structure�. Every oscillator then
receives only one forward connection. By assuming pN�1,
every oscillator �except those in the last shell� receives ap-
proximately pN backward. connections.3 Therefore, the only
difference from the ER directed networks is that backward
connections come not from the last shell but from the next
shell. Thus, we get the following equations:

��̃��1 − t� + ����1 − �2� = 1, �B1�

�

pN
���h − �h−1� + ����h − �h+1� = 1 for 2 � h 	 L ,

�B2�

�

pN
���L − �L−1� = 1. �B3�

Using the approximations available for large pN, we obtain

���h − �h−1� =
pN��pN�L−h+1 − 1	

��pN − 1�
for h  2. �B4�

The entrainment thresholds is thus

�cr =
pN��pN�L−1 − 1	

pN − 1

 �pN�L−1. �B5�

A stability analysis can also be performed in a same manner
as in Sec. IV C. We then get the same relaxation time as Eq.
�26�. It is thus found that the dependences of the entrainment
threshold and the relaxation time are also exponential in the
bidirectional networks, but their functional forms are slightly
different from those for the directed networks.

3This approximated network is the same as the Cayley tree. Using
some particular phase models, the entrainment solution for the Cay-
ley tree network has been obtained by Yamada �19� and Radicchi
and Meyer-Ortmanns �21�.
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