130 research outputs found

    Determination of antioxidant activity of polyphenol extract from grape seeds

    Get PDF
    The significance of carbohydrates for endurance training has been well established, whereas the role of protein and the adaptive response with endurance training is unclear. Therefore, the aim of this perspective is to discuss the current evidence on the role of dietary protein and the adaptive response with endurance training. On a metabolic level, a single bout of endurance training stimulates the oxidation of several amino acids. Although the amount of amino acids as part of total energy expenditure during exercise is relatively low compared to other substrates (e.g., carbohydrates and fat), it may depress the rates of skeletal muscle protein synthesis, and thereby have a negative effect on training adaptation. A low supply of amino acids relative to that of carbohydrates may also have negative effects on the synthesis of capillaries, synthesis and turn-over of mitochondrial proteins and proteins involved in oxygen transport including hamoglobin and myoglobin. Thus far, the scientific evidence demonstrating the significance of dietary protein is mainly derived from research with resistance exercise training regimes. This is not surprising since the general paradigm states that endurance training has insignificant effects on skeletal muscle growth. This could have resulted in an underappreciation of the role of dietary protein for the endurance athlete. To conclude, evidence of the role of protein on endurance training adaptations and performance remains scarce and is mainly derived from acute exercise studies. Therefore, future human intervention studies must unravel whether dietary protein is truly capable of augmenting endurance training adaptations and ultimately performance

    The impact of obesity on cardiac troponin levels after prolonged exercise in humans

    Get PDF
    Elevated cardiac troponin I (cTnI), a marker for cardiac damage, has been reported after high-intensity exercise in healthy subjects. Currently, little is known about the impact of prolonged moderate-intensity exercise on cTnI release, but also the impact of obesity on this response. 97 volunteers (55 men and 42 women), stratified for BMI, performed a single bout of walking exercise (30–50 km). We examined cTnI-levels before and immediately after the exercise bout in lean (BMI < 25 kg/m2, n = 30, 57 ± 19 years), overweight (25 ≤ BMI < 30 kg/m2, n = 29, 56 ± 11 years), and obese subjects (BMI ≥ 30 kg/m2, n = 28, 53 ± 9 years). Walking was performed at a self-selected pace. cTnI was assessed using a high-sensitive cTnI-assay (Centaur; clinical cut-off value ≥0.04 μg/L). We recorded subject characteristics (body weight, blood pressure, presence of cardiovascular risk) and examined exercise intensity by recording heart rate. Mean cTnI-levels increased significantly from 0.010 ± 0.006 to 0.024 ± 0.046 μg/L (P < 0.001). The exercise-induced increase in cTnI was not different between lean, overweight and obese subjects (two-way ANOVA interaction; P = 0.27). In 11 participants, cTnI was elevated above the clinical cut-off value for myocardial infarction. Logistic regression analysis identified exercise intensity (P < 0.001), but not BMI, body fat percentage or waist circumference to significantly relate to positive troponin tests. In conclusion, prolonged, moderate-intensity exercise results in a comparable increase in cTnI-levels in lean, overweight and obese subjects. Therefore, measures of obesity unlikely relate to the magnitude of the post-exercise elevation in cTnI

    Study protocol of the TIRED study:A randomised controlled trial comparing either graded exercise therapy for severe fatigue or cognitive behaviour therapy with usual care in patients with incurable cancer

    Get PDF
    Background: Fatigue is a common and debilitating symptom for patients with incurable cancer receiving systemic treatment with palliative intent. There is evidence that non-pharmacological interventions such as graded exercise therapy (GET) or cognitive behaviour therapy (CBT) reduce cancer-related fatigue in disease-free cancer patients and in patients receiving treatment with curative intent. These interventions may also result in a reduction of fatigue in patients receiving treatment with palliative intent, by improving physical fitness (GET) or changing fatigue-related cognitions and behaviour (CBT). The primary aim of our study is to assess the efficacy of GET or CBT compared to usual care (UC) in reducing fatigue in patients with incurable cancer. Methods: The TIRED study is a multicentre three-armed randomised controlled trial (RCT) for incurable cancer patients receiving systemic treatment with palliative intent. Participants will be randomised to GET, CBT, or UC. In addition to UC, the GET group will participate in a 12-week supervised exercise programme. The CBT group will receive a 12-week CBT intervention in addition to UC. Primary and secondary outcome measures will be assessed at baseline, post-intervention (14 weeks), and at follow-up assessments (18 and 26 weeks post-randomisation). The primary outcome measure is fatigue severity (Checklist Individual Strength subscale fatigue severity). Secondary outcome measures are fatigue (EORTC-QLQ-C30 subscale fatigue), functional impairments (Sickness Impact Profile total score, EORTC-QLQ-C30 subscale emotional functioning, subscale physical functioning) and quality of life (EORTC-QLQ-C30 subscale QoL). Outcomes at 14 weeks (primary endpoint) of either treatment arm will be compared to those of UC participants. In addition, outcomes at 18 and 26 weeks (follow-up assessments) of either treatment arm will be compared to those of UC participants. Discussion: To our knowledge, the TIRED study is the first RCT investigating the efficacy of GET and CBT on reducing fatigue during treatment with palliative intent in incurable cancer patients. The results of this study will provide information about the possibility and efficacy of GET and CBT for severely fatigued incurable cancer patients

    Vascular adaptation to exercise in humans: Role of hemodynamic stimuli

    Get PDF
    On the 400th anniversary of Harvey’s Lumleian lectures, this review focuses on “hemodynamic” forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity. © 2017 the American Physiological Society

    Impact of lifelong exercise training on endothelial ischemia-reperfusion and ischemic preconditioning in humans.

    Get PDF
    Reperfusion is essential for ischemic tissue survival, but causes additional damage to the endothelium (i.e. ischemia-reperfusion [IR] injury). Ischemic preconditioning (IPC) refers to short repetitive episodes of ischemia that can protect against IR. However, IPC efficacy attenuates with older age. Whether physical inactivity contributes to the attenuated efficacy of IPC to protect against IR injury in older humans is unclear. We tested the hypotheses that lifelong exercise training relates to 1) attenuated endothelial IR and 2) maintained IPC efficacy that protects veteran athletes against endothelial IR. In 18 sedentary male individuals (SED, 20 years, 63±7 years) and 20 veteran male athletes (ATH, >5 exercise hours/week for >20 years, 63±6 years), we measured brachial artery endothelial function with flow-mediated dilation (FMD) before and after IR. We induced IR by 20-minutes of ischemia followed by 20-minutes of reperfusion. Randomized over 2 days, participants underwent either 35-minute rest or IPC (3 cycles of 5-minutes cuff inflation to 220 mmHg with 5-minutes of rest) before IR. In SED, FMD decreased after IR (median [interquartile range]): (3.0% [2.0-4.7] to 2.1% [1.5-3.9], P=0.046) and IPC did not prevent this decline (4.1% [2.6-5.2] to 2.8% [2.2-3.6],P=0.012). In ATH, FMD was preserved after IR (3.0% [1.7-5.4] to 3.0% [1.9-4.1], P=0.82) and when IPC preceded IR (3.2% [1.9-4.2] to 2.8% [1.4-4.6],P=0.18). These findings indicate that lifelong exercise training is associated with increased tolerance against endothelial IR. These protective, preconditioning effects of lifelong exercise against endothelial ischemia-reperfusion may contribute to the cardio-protective effects of exercise training

    CHANGES IN DYNAMIC LEFT VENTRICULAR FUNCTION, ASSESSED BY THE STRAIN-VOLUME LOOP, RELATE TO REVERSE REMODELLING AFTER AORTIC VALVE REPLACEMENT.

    Get PDF
    OBJECTIVES: Aortic valve replacement (AVR) leads to remodelling of the left ventricle (LV). Adopting a novel technique to examine dynamic LV function, our study explored whether post-AVR changes in dynamic LV function and/or changes in aortic valve characteristics are associated with LV mass regression during follow-up. METHODS AND RESULTS: We retrospectively analysed 30 participants with severe aortic stenosis who underwent standard transthoracic echocardiographic assessment prior to AVR (88[22-143] days), post-AVR (13[6-22] days) and during follow-up (455[226-907] days). We assessed standard measures of LV structure, function and aortic valve characteristics. Novel insight into dynamic LV function was provided through a 4-chamber image by examination of the temporal relation between LV longitudinal strain (Ô‘) and volume (Ô‘-volume loops), representing the contribution of LV mechanics to volume change. AVR resulted in immediate changes in structural valve characteristics, alongside a reduced LV longitudinal peak Ô‘ and improved coherence between the diastolic and systolic part of the Ô‘-volume loop (all P0.05). CONCLUSIONS: We found that post-AVR improvements in dynamic LV function, are related to long-term remodelling of the left ventricle. This highlights the potential importance of assessing dynamic LV function for cardiac adaptations in vivo

    Ischemic preconditioning improves maximal performance in humans

    Get PDF
    Repeated episodes of ischemia followed by reperfusion, commonly referred to as ischemic preconditioning (IPC), represent an endogenous protective mechanism that delays cell injury. IPC also increases blood flow and improves endothelial function. We hypothesize that IPC will improve physical exercise performance and maximal oxygen consumption. The purpose of the study was to examine the effect of ischemic preconditioning in leg skeletal muscles on cycling exercise performance in healthy individuals. Fifteen healthy, well-trained subjects performed two incremental maximal exercise tests on a bicycle ergometer. Power output, oxygen consumption, ventilation, respiratory quotient, and heart rate were measured continuously. Blood pressure and blood lactate were measured before and after the test. One exercise test was performed after the application of ischemic preconditioning, using a protocol of three series of 5-min ischemia at both legs with resting periods of 5 min in between. The other maximal cycling test served as a control. Tests were conducted in counterbalanced order, at least 1 week apart, at the same time of the day. The repeated ischemic periods significantly increased maximal oxygen consumption from 56.8 to 58.4 ml/min per kg (P = 0.003). Maximal power output increased significantly from 366 to 372 W (P = 0.05). Ischemic preconditioning had no effect on ventilation, respiratory quotient, maximal heart rate, blood pressure or on blood lactate. Repeated short-term leg ischemia prior to an incremental bicycle exercise test improves maximal oxygen consumption by 3% and power output by 1.6%. This protocol, which is suggested to mimic the effects of ischemic preconditioning, may have important implications for exercise performance

    Vascular Function and Structure in Veteran Athletes after Myocardial Infarction.

    Get PDF
    PURPOSE: Although athletes demonstrate lower cardiovascular risk and superior vascular function compared with sedentary peers, they are not exempted from cardiac events (i.e., myocardial infarction [MI]). The presence of an MI is associated with increased cardiovascular risk and impaired vascular function. We tested the hypothesis that lifelong exercise training in post-MI athletes, similar as in healthy controls, is associated with a superior peripheral vascular function and structure compared with a sedentary lifestyle in post-MI individuals. METHODS: We included 18 veteran athletes (ATH) (>20 yr) and 18 sedentary controls (SED). To understand the effect of lifelong exercise training after MI, we included 20 veteran post-MI athletes (ATH + MI) and 19 sedentary post-MI controls (SED + MI). Participants underwent comprehensive assessment using vascular ultrasound (vascular stiffness, intima-media thickness, and endothelium (in)dependent mediated dilatation). Lifetime risk score was calculated for a 30-yr risk prediction of cardiovascular disease mortality of the participants. RESULTS: ATH demonstrated a lower vascular stiffness and smaller femoral intima-media thickness compared with SED. Vascular function and structure did not differ between ATH + MI and SED + MI. ATH (4.0% ± 5.1%) and ATH + MI (6.1% ± 3.7%) had a significantly better lifetime risk score compared with their sedentary peers (SED: 6.9% ± 3.7% and SED + MI: 9.3% ± 4.8%). ATH + MI had no secondary events versus two recurrent MI and six elective percutaneous coronary interventions within SED + MI (P < 0.05). CONCLUSION: Although veteran post-MI athletes did not have a superior peripheral vascular function and structure compared with their sedentary post-MI peers, benefits of lifelong exercise training in veteran post-MI athletes relate to a better cardiovascular risk profile and lower occurrence of secondary events

    Heart failure patients demonstrate impaired changes in brachial artery blood flow and shear rate pattern during moderate-intensity cycle exercise

    Get PDF
    New Findings What is the central question of this study? We explored whether heart failure (HF) patients demonstrate different exercise-induced brachial artery shear rate patterns compared with control subjects. What is the main finding and its importance? Moderate-intensity cycle exercise in HF patients is associated with an attenuated increase in brachial artery anterograde and mean shear rate and skin temperature. Differences between HF patients and control subjects cannot be explained fully by differences in workload. HF patients demonstrate a less favourable shear rate pattern during cycle exercise compared with control subjects. Repeated elevations in shear rate (SR) in conduit arteries, which occur during exercise, represent a key stimulus to improve vascular function. We explored whether heart failure (HF) patients demonstrate distinct changes in SR in response to moderate-intensity cycle exercise compared with healthy control subjects. We examined brachial artery SR during 40 min of cycle exercise at a work rate equivalent to 65% peak oxygen uptake in 14 HF patients (65 ± 7 years old, 13 men and one woman) and 14 control subjects (61 ± 5 years old, 12 men and two women). Brachial artery diameter, SR and oscillatory shear index (OSI) were assessed using ultrasound at baseline and during exercise. The HF patients demonstrated an attenuated increase in mean and anterograde brachial artery SR during exercise compared with control subjects (time × group interaction, P = 0.003 and P 0.05). In conclusion, HF patients demonstrate a less favourable SR pattern during cycle exercise than control subjects, characterized by an attenuated mean and anterograde SR and by increased OSI

    Association Between Statin Use and Prevalence of Exercise-Related Injuries: A Cross-Sectional Survey of Amateur Runners in the Netherlands.

    Get PDF
    BACKGROUND: HMG-CoA reductase inhibitors (statins) are the first-choice therapy for primary prevention of cardiovascular disease. Some maintain that statins cause adverse musculoskeletal outcomes in highly active individuals, but few studies have examined the effects of statins on exercise-related injuries. OBJECTIVE: We sought to compare the prevalence of exercise-related injuries between runners who do or do not use statins. METHODS: Amateur runners (n = 4460) completed an extensive online questionnaire on their exercise patterns and health status. Participants replied to questions on the prevalence of exercise-related injuries in the previous year. Injuries were divided into general injuries, tendon- and ligament-related injuries, and muscle-related injuries. Participants were also queried about statin use: the type of statin, statin dose, and duration of treatment. Runners were divided into statin users, non-statin users with hypercholesterolemia, and controls for analysis. RESULTS: The crude odds ratios (ORs) for injuries, tendon- or ligament-related injuries, and muscle-related injuries in statin users compared with controls were 1.14 (95% confidence interval [CI] 0.79-1.66), 1.10 (95% CI 0.71-1.72), and 1.15 (95% CI 0.69-1.91), respectively. After adjustment for age, sex, body mass index (BMI), and metabolic equivalent of task (MET) h/week of exercise, the ORs were 1.11 (95% CI 0.76-1.62), 1.06 (95% CI 0.68-1.66), and 0.98 (95% CI 0.58-1.64), respectively. Similar effect measures were found when comparing non-statin users with hypercholesterolemia and controls. CONCLUSION: We did not find an association between statin use and the prevalence of exercise-related injuries or tendon-, ligament-, and muscle-related injuries. Runners receiving statins should continue normal physical activity without concern for increased risk of injuries
    • …
    corecore