8,024 research outputs found

    Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-Organising Maps

    Full text link
    With the advent of large scale surveys the manual analysis and classification of individual radio source morphologies is rendered impossible as existing approaches do not scale. The analysis of complex morphological features in the spatial domain is a particularly important task. Here we discuss the challenges of transferring crowdsourced labels obtained from the Radio Galaxy Zoo project and introduce a proper transfer mechanism via quantile random forest regression. By using parallelized rotation and flipping invariant Kohonen-maps, image cubes of Radio Galaxy Zoo selected galaxies formed from the FIRST radio continuum and WISE infrared all sky surveys are first projected down to a two-dimensional embedding in an unsupervised way. This embedding can be seen as a discretised space of shapes with the coordinates reflecting morphological features as expressed by the automatically derived prototypes. We find that these prototypes have reconstructed physically meaningful processes across two channel images at radio and infrared wavelengths in an unsupervised manner. In the second step, images are compared with those prototypes to create a heat-map, which is the morphological fingerprint of each object and the basis for transferring the user generated labels. These heat-maps have reduced the feature space by a factor of 248 and are able to be used as the basis for subsequent ML methods. Using an ensemble of decision trees we achieve upwards of 85.7% and 80.7% accuracy when predicting the number of components and peaks in an image, respectively, using these heat-maps. We also question the currently used discrete classification schema and introduce a continuous scale that better reflects the uncertainty in transition between two classes, caused by sensitivity and resolution limits

    The Moment of Inertia and the Scissors Mode of a Bose-condensed Gas

    Full text link
    We relate the frequency of the scissors mode to the moment of inertia of a trapped Bose gas at finite temperature in a semi-classical approximation. We apply these theoretical results to the data obtained in our previous study of the properties of the scissors mode of a trapped Bose-Einstein condensate of 87^{87}Rb atoms as a function of the temperature. The frequency shifts that we measured show quenching of the moment of inertia of the Bose gas at temperatures below the transition temperature - the system has a lower moment of inertia that of a rigid body with the same mass distribution, because of superfluidity.Comment: 14 pages, 5 fig

    Observation of harmonic generation and nonlinear coupling in the collective dynamics of a Bose condensate

    Full text link
    We report the observation of harmonic generation and strong nonlinear coupling of two collective modes of a condensed gas of rubidium atoms. Using a modified TOP trap we changed the trap anisotropy to a value where the frequency of the m=0 high-lying mode corresponds to twice the frequency of the m=0 low-lying mode, thus leading to strong nonlinear coupling between these modes. By changing the anisotropy of the trap and exciting the low-lying mode we observed significant frequency shifts of this fundamental mode and also the generation of its second harmonic.Comment: 4 pages,3 figure

    Granular Rheology in Zero Gravity

    Full text link
    We present an experimental investigation on the rheological behavior of model granular media made of nearly elastic spherical particles. The experiments are performed in a cylindrical Couette geometry and the experimental device is placed inside an airplane undergoing parabolic flights to cancel the effect of gravity. The corresponding curves, shear stress versus shear rate, are presented and a comparison with existing theories is proposed. The quadratic dependence on the shear rate is clearly shown and the behavior as a function of the solid volume fraction of particles exhibits a power law function. It is shown that theoretical predictions overestimate the experiments. We observe, at intermediate volume fractions, the formation of rings of particles regularly spaced along the height of the cell. The differences observed between experimental results and theoretical predictions are discussed and related to the structures formed in the granular medium submitted to the external shear.Comment: 10 pages, 6 figures to be published in Journal of Physics : Condensed Matte

    Bose-Einstein condensation in a stiff TOP trap with adjustable geometry

    Full text link
    We report on the realisation of a stiff magnetic trap with independently adjustable trap frequencies, ωz\omega_z and ωr\omega_r, in the axial and radial directions respectively. This has been achieved by applying an axial modulation to a Time-averaged Orbiting Potential (TOP) trap. The frequency ratio of the trap, ωz/ωr\omega_z / \omega_r, can be decreased continuously from the original TOP trap value of 2.83 down to 1.6. We have transferred a Bose-Einstein condensate (BEC) into this trap and obtained very good agreement between its observed anisotropic expansion and the hydrodynamic predictions. Our method can be extended to obtain a spherical trapping potential, which has a geometry of particular theoretical interest.Comment: 4 pages, 3 figure

    The Ha luminosity function and star formation rate up to z~1

    Full text link
    We describe ISAAC/ESO-VLT observations of the Ha(6563) Balmer line of 33 field galaxies from the Canada-France Redshift Survey (CFRS) with redshifts selected between 0.5 and 1.1. We detect Ha in emission in 30 galaxies and compare the properties of this sample with the low-redshift sample of CFRS galaxies at z~0.2 (Tresse & Maddox 1998). We find that the Ha luminosity, L(Ha), is tightly correlated to M(B(AB)) in the same way for both the low- and high-redshift samples. L(Ha) is also correlated to L([OII]3727), and again the relation appears to be similar at low and high redshifts. The ratio L([OII])/L(Ha) decreases for brighter galaxies by as much as a factor 2 on average. Derived from the Ha luminosity function, the comoving Ha luminosity density increases by a factor 12 from =0.2 to =1.3. Our results confirm a strong rise of the star formation rate (SFR) at z<1.3, proportional to (1+z)^{4.1+/-0.3} (with H_0=50 km/s/Mpc, q_0=0.5). We find an average SFR(2800 Ang)/SFR(Ha) ratio of 3.2 using the Kennicutt (1998) SFR transformations. This corresponds to the dust correction that is required to make the near UV data consistent with the reddening-corrected Ha data within the self-contained, I-selected CFRS sample.Comment: 16 pages, 16 figures and 3 tables included, figures and text updated, same results as in the 1st version, accepted in MNRA

    A {\mu}-TPC detector for the characterization of low energy neutron fields

    Full text link
    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields

    Polymers pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore

    Get PDF
    We investigate polymer partitioning from polymer mixtures into nanometer size cavities by formulating an equation of state for a binary polymer mixture assuming that only one (smaller) of the two polymer components can penetrate the cavity. Deriving the partitioning equilibrium equations and solving them numerically allows us to introduce the concept of "polymers-pushing-polymers" for the action of non-penetrating polymers on the partitioning of the penetrating polymers. Polymer partitioning into a pore even within a very simple model of a binary polymer mixture is shown to depend in a complicated way on the composition of the polymer mixture and/or the pore-penetration penalty. This can lead to enhanced as well as diminished partitioning, due to two separate energy scales that we analyse in detail.Comment: 10 pages, 6 figure
    • …
    corecore