471 research outputs found
Symmetry-breaking instability in a prototypical driven granular gas
Symmetry-breaking instability of a laterally uniform granular cluster (strip
state) in a prototypical driven granular gas is investigated. The system
consists of smooth hard disks in a two-dimensional box, colliding inelastically
with each other and driven, at zero gravity, by a "thermal" wall. The limit of
nearly elastic particle collisions is considered, and granular hydrodynamics
with the Jenkins-Richman constitutive relations is employed. The hydrodynamic
problem is completely described by two scaled parameters and the aspect ratio
of the box. Marginal stability analysis predicts a spontaneous symmetry
breaking instability of the strip state, similar to that predicted recently for
a different set of constitutive relations. If the system is big enough, the
marginal stability curve becomes independent of the details of the boundary
condition at the driving wall. In this regime, the density perturbation is
exponentially localized at the elastic wall opposite to the thermal wall. The
short- and long-wavelength asymptotics of the marginal stability curves are
obtained analytically in the dilute limit. The physics of the symmetry-breaking
instability is discussed.Comment: 11 pages, 14 figure
Mapping the wind resource over UK cities
Decentralised energy sources, such as small-scale-wind energy, have a number of well-known advantages. However, within urban areas, the potential for energy generation from the wind is not currently fully utilised. One of the most significant reasons for this is that the complexity of air flows within the urban boundary layer makes accurate predictions of the wind resource difficult to achieve. Without sufficiently accurate methods of predicting this resource, there is a danger that wind turbines will either be installed at unsuitable locations or that many viable sites will be overlooked. In this paper, we compare the accuracy of three different analytical methodologies for predicting above-roof mean wind speeds across a number of UK cities. The first is based upon a methodology developed by the UK Meteorological Office. We then implement two more complex methods which utilise maps of surface aerodynamic parameters derived from detailed building data. The predictions are compared with measured mean wind speeds from a wide variety of UK urban locations. The results show that the methodologies are generally more accurate when more complexity is used in the approach, particularly for the sites which are well exposed to the wind. The best agreement with measured data is achieved when the influence of wind direction is thoroughly considered and aerodynamic parameters are derived from detailed building data. However, some uncertainties in the building data add to the errors inherent within the methodologies. Consequently, it is suggested that a detailed description of both the shapes and heights of the local building roofs is required to maximise the accuracy of wind speed predictions
Intersubband spin-density excitations in quantum wells with Rashba spin splitting
In inversion-asymmetric semiconductors, spin-orbit coupling induces a
k-dependent spin splitting of valence and conduction bands, which is a
well-known cause for spin decoherence in bulk and heterostructures.
Manipulating nonequilibrium spin coherence in device applications thus requires
understanding how valence and conduction band spin splitting affects carrier
spin dynamics. This paper studies the relevance of this decoherence mechanism
for collective intersubband spin-density excitations (SDEs) in quantum wells. A
density-functional formalism for the linear spin-density matrix response is
presented that describes SDEs in the conduction band of quantum wells with
subbands that may be non-parabolic and spin-split due to bulk or structural
inversion asymmetry (Rashba effect). As an example, we consider a 40 nm
GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction
subbands. We find a coupling and wavevector-dependent splitting of the
longitudinal and transverse SDEs. However, decoherence of the SDEs is not
determined by subband spin splitting, due to collective effects arising from
dynamical exchange and correlation.Comment: 10 pages, 4 figure
The Detection of a Massive Chain of Dark H i Clouds in the GAMA G23 Field
We report on the detection of a large, extended H i cloud complex in the Galaxy and Mass Survey G23 field, located at a redshift of z âŒ0.03, observed as part of the MeerKAT Habitat of Galaxies Survey campaign (a pilot survey to explore the mosaicing capabilities of the MeerKAT telescope). The cloud complex, with a total mass of 1010.0 M, lies in proximity to a large galaxy group with M dyn âŒ1013.5 M. We identify seven H peak concentrations, interconnected as a tenuous chain structure, extending âŒ400 kpc from east to west, with the largest (central) concentration containing 109.7 M in H gas distributed across 50 kpc. The main source is not detected in ultraviolet, optical, or infrared imaging. The implied gas mass-to-light ratio (M H I/L r) is extreme (>1000) even in comparison to other dark clouds. The complex has very little kinematic structure (110 km s-1), making it difficult to identify cloud rotation. Assuming pressure support, the total mass of the central concentration is > 1010.2 M, while a lower limit to the dynamical mass in the case of full rotational support is 1010.4 M. If the central concentration is a stable structure, it has to contain some amount of unseen matter, but potentially less than is observed for a typical galaxy. It is, however, not clear whether the structure has any gravitationally stable concentrations. We report a faint UV-optical-infrared source in proximity to one of the smaller concentrations in the gas complex, leading to a possible stellar association. The system nature and origins is enigmatic, potentially being the result of an interaction with or within the galaxy group it appears to be associated with
Optimised mixing and flow resistance during shear flow over a rib roughened boundary
A series of numerical investigations has been performed to study the effect of lower boundary roughness on turbulent flow in a two-dimensional channel. The roughness spacing to height ratio, w/k, has been investigated over the range 0.12 to 402 by varying the horizontal rib spacing. The square roughness elements each have a cross-sectional area of (0.05 H)2, where H is the full channel height. The Reynolds number, ReÏ is fixed based on the value of the imposed pressure gradient, dp/dx, and is in the range 6.3 Ă 103 â 4.5 Ă 104. A Reynolds Averaged NavierâStokes (RANS) based turbulence modelling approach is adopted using a commercial CFD code, ANSYS-CFX 14.0. Measurements of eddy viscosity and friction factor have been made over this range to establish the optimum spacings to produce maximum turbulence enhancement, mixing and resistance to flow. These occur when w/k is approximately 7. It is found that this value is only weakly dependent on Reynolds number, and the decay rate of turbulence enhancement as a function of w/k ratio beyond this optimum spacing is slow. The implications for heat transfer design optimisation and particle transport are considered
The SAMI Galaxy Survey: Spatially resolving the environmental quenching of star formation in GAMA galaxies
We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph (SAMI) Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially-resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission we measure the radial profiles of star formation in a sample of 201âstar-forming galaxies covering three orders of magnitude in stellar mass (MâMâ; 108.1-1010.95âMâ) and in 5th nearest neighbour local environment density (ÎŁ5; 10â1.3- 102.1âMpcâ2). We show that star formation rate gradients in galaxies are steeper in dense (log10(ÎŁ5/Mpc2) > 0.5) environments by 0.58 ± 0.29âdexâreâ1 in galaxies with stellar masses in the range 1010 1.0). These lines of evidence strongly suggest that with increasing local environment density the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous
Low-cost wind resource assessment for small-scale turbine installations using site pre-screening and short-term wind measurements
A two-stage approach to low-cost wind resource assessment for small-scale wind installations has been investigated in terms of its ability to screen for non-viable sites and to provide accurate wind power predictions at promising locations. The approach was implemented as a case study at ten UK locations where domestic-scale turbines were previously installed. In stage one, sites were pre-screened using a boundary-layer scaling model to predict the mean wind power density, including estimated uncertainties, and these predictions were compared to a minimum viability criterion. Using this procedure, five of the seven non-viable sites were correctly identified without direct onsite wind measurements and none of the viable sites were excluded. In stage two, more detailed analysis was carried out using 3 months onsite wind measurements combined with measure-correlate-predict (MCP) approaches. Using this process, the remaining two non-viable sites were identified and the available wind power density at the three viable sites was accurately predicted. The effect of seasonal variability on the MCPpredicted wind resource was considered and the implications for financial projections were highlighted. The study provides a framework for low-cost wind resource assessment in cases where long-term onsite measurements may be too costly or impractical
Baryons: What, When and Where?
We review the current state of empirical knowledge of the total budget of
baryonic matter in the Universe as observed since the epoch of reionization.
Our summary examines on three milestone redshifts since the reionization of H
in the IGM, z = 3, 1, and 0, with emphasis on the endpoints. We review the
observational techniques used to discover and characterize the phases of
baryons. In the spirit of the meeting, the level is aimed at a diverse and
non-expert audience and additional attention is given to describe how space
missions expected to launch within the next decade will impact this scientific
field.Comment: Proceedings Review for "Astrophysics in the Next Decade: JWST and
Concurrent Facilities", ed. X. Tielens, 38 pages, 10 color figures. Revised
to address comments from the communit
Masculinities, affect and the (re)place(ment) of stardom in Formula One fan leisure practices
Writing from an autoethnographic perspective, this article explores male leisure practices via the mediated relationships fans enter into with stars. More specifically, my own fandom for Formula One driver Jacques Villeneuve is the locus of study, revealing how this affective investment shapes and furnishes my corresponding leisure practices. Notions of gendered 'performativity' come to the fore, with my own displays evoking, enacting and revealing oscillating performances of masculinity. Moreover, there are interesting gendered dynamics that such fan leisure practices flag in terms of the intersection of female/male relationships and the potential 'fantasy' and/or narcissistic readings that a male fan identifying with and performing as another male sport star afford. Finally, my research reveals paradoxes for contemporary masculinities, with fans reliant upon mediation and commodification to facilitate and sustain their performative roles. © 2011 Taylor & Francis
- âŠ