5,593 research outputs found
Local superfluid densities probed via current-induced superconducting phase gradients
We have developed a superconducting phase gradiometer consisting of two
parallel DNA-templated nanowires connecting two thin-film leads. We have ramped
the cross current flowing perpendicular to the nanowires, and observed
oscillations in the lead-to-lead resistance due to cross-current-induced phase
differences. By using this gradiometer we have measured the temperature and
magnetic field dependence of the superfluid density and observed an
amplification of phase gradients caused by elastic vortex displacements. We
examine our data in light of Miller-Bardeen theory of dirty superconductors and
a microscale version of Campbell's model of field penetration.Comment: 5 pages, 6 figure
The Place of Crossbred Lambs in Australian Lamb Production
The Australian sheep industry, particularly the lamb meat sector has undergone a major change in focus, such that consumer requirements are a paramount determinant for production and processing developments. This change has been facilitated by the use of cross breeding production systems where the benefits of heterosis are captured and the implementation of a performance recording system amongst initially, breeders of terminal sires. This sector of the industry has strongly embraced genetic selection using objectively measured traits and this is one of the contributors to the superior growth rate of crossbred progeny over pure bred progeny. A crossbreeding system does present challenges as it can also lead to fatter carcases depending on slaughter weight targets and thus less lean or saleable meat. This means that appropriate sire selection is mandatory. Which ever region of the world is under consideration; crossbreeding for meat production will return benefits and these will be further strengthened if the processing sector also adopts technology to enhance eating quality such as electrical stimulation and ageing
Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)
The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory
Fragments of ML decidable by nested data class memory automata
The call-by-value language RML may be viewed as a canonical restriction of Standard ML to ground-type references, augmented by a “bad variable” construct in the sense of Reynolds. We consider the fragment of (finitary) RML terms of order at most 1 with free variables of order at most 2, and identify two subfragments of this for which we show observational equivalence to be decidable. The first subfragment, RMLP−Str2⊢1, consists of those terms in which the P-pointers in the game semantic representation are determined by the underlying sequence of moves. The second subfragment consists of terms in which the O-pointers of moves corresponding to free variables in the game semantic representation are determined by the underlying moves. These results are shown using a reduction to a form of automata over data words in which the data values have a tree-structure, reflecting the tree-structure of the threads in the game semantic plays. In addition we show that observational equivalence is undecidable at every third- or higher-order type, every second-order type which takes at least two first-order arguments, and every second-order type (of arity greater than one) that has a first-order argument which is not the final argument
Engineering Properties of Kentucky Oil Shales
Excavation, handling, and the environmentally safe disposal of spent oil shale and overburden materials require a knowledge of their geotechnical engineering properties. To determine these properties a laboratory investigation of the physical and geotechnical engineering properties was made. The physical tests consisted of mechanical analyses, Atterberg Limits, and specific gravity determinations. Geotechnical properties were determined by moisture-density analyses, triaxial compression, permeability tests, slake-durability, one-dimensional compression tests, and Los Angeles abrasion. A one-dimensional compression test was devised to address the problem of placement, loading, and saturation of the spent shales and overburden materials. The compacted, unprocessed oil shales were more susceptible to inundation and compression than compacted specimens of retorted shales and chars. Comparisons of the geotechnical properties of the unprocessed oil shales and processed shales are made
Operation of a superconducting nanowire quantum interference device with mesoscopic leads
A theory describing the operation of a superconducting nanowire quantum
interference device (NQUID) is presented. The device consists of a pair of
thin-film superconducting leads connected by a pair of topologically parallel
ultra-narrow superconducting wires. It exhibits intrinsic electrical
resistance, due to thermally-activated dissipative fluctuations of the
superconducting order parameter. Attention is given to the dependence of this
resistance on the strength of an externally applied magnetic field aligned
perpendicular to the leads, for lead dimensions such that there is essentially
complete and uniform penetration of the leads by the magnetic field. This
regime, in which at least one of the lead dimensions lies between the
superconducting coherence and penetration lengths, is referred to as the
mesoscopic regime. The magnetic field causes a pronounced oscillation of the
device resistance, with a period not dominated by the Aharonov-Bohm effect
through the area enclosed by the wires and the film edges but, rather, in terms
of the geometry of the leads, in contrast to the well-known Little-Parks
resistance of thin-walled superconducting cylinders. A theory, encompassing
this phenomenology, is developed through extensions, to the setting of parallel
superconducting wires, of the Ivanchenko-Zil'berman-Ambegaokar-Halperin theory
for the case of short wires and the Langer-Ambegaokar-McCumber-Halperin theory
for the case of longer wires. It is demonstrated that the NQUID acts as a probe
of spatial variations in the superconducting order parameter.Comment: 20 pages, 18 figure
The physical scale of the far-infrared emission in the most luminous submillimetre galaxies II: evidence for merger-driven star formation
We present high-resolution 345 GHz interferometric observations of two
extreme luminous (L_{IR}>10^{13} L_sun), submillimetre-selected galaxies (SMGs)
in the COSMOS field with the Submillimeter Array (SMA). Both targets were
previously detected as unresolved point-sources by the SMA in its compact
configuration, also at 345 GHz. These new data, which provide a factor of ~3
improvement in resolution, allow us to measure the physical scale of the
far-infrared in the submillimetre directly. The visibility functions of both
targets show significant evidence for structure on 0.5-1 arcsec scales, which
at z=1.5 translates into a physical scale of 5-8 kpc. Our results are
consistent with the angular and physical scales of two comparably luminous
objects with high-resolution SMA followup, as well as radio continuum and CO
sizes. These relatively compact sizes (<5-10 kpc) argue strongly for
merger-driven starbursts, rather than extended gas-rich disks, as the preferred
channel for forming SMGs. For the most luminous objects, the derived sizes may
also have important physical consequences; under a series of simplifying
assumptions, we find that these two objects in particular are forming stars
close to or at the Eddington limit for a starburst.Comment: 9 pages, 3 Figures, submitted to MNRA
Model Benchmarking and Reference Signals for Angled-beam Shear Wave Ultrasonic NDE Inspections
NDE modeling and simulation are important tools to support the development and validation of enhanced localization and characterization techniques. Previously, important achievements were made by the USAF to address crack detection in aircraft structures using angled-beam shear wave inspection techniques. However, new work on model benchmarking is needed to move beyond detection and achieve reliable crack characterization. To achieve this goal, simulated studies are needed to verify that models can accurately represent all of the key variables with the inspection of multilayer structures with fastener sites and varying crack conditions. Often with model benchmark studies, the accuracy of the model is evaluated based on the change in response relative to a selected reference signal. During recent simulated and experimental studies, some challenges were discovered concerning the creation and/or selection of a reference signal in a plate with a vertical hole and crack. The focus of this paper is on key findings concerning model benchmarking using CIVA-UT for angled-beam shear wave inspections. The use of a side drilled hole (SDH) in a plate was found to be somewhat problematic as a reference signal for angled beam shear wave inspection. Previously, only a limited number of studies have looked at model benchmarking for angled beam shear wave inspections. Systematic studies were performed with varying SDH depth and size, and varying the ultrasonic probe frequency, focal depth, and probe height. Care must be taken in understanding the precise beam properties with these experiments. One issue is that there is some increased error with the simulation of angled shear wave beams, especially in the near-field. Even more significant, asymmetry in real probes and the inherent sensitivity of signals in the near-field to subtle test conditions were found to provide a greater challenge with achieving model agreement. Through these studies, conditions of good and poor agreement were observed. For some inspection conditions, the skip signal off of the far wall from the side drilled hole can provide a better reference than the direct reflected signal. All in all, these seemingly mundane studies were found to be important with providing guidance on reference signal selection for model benchmarking work on the inspection of fastener sites with cracks
- …