18,246 research outputs found

    Adaptation of NASA technology for the optimization of orthopedic knee implants

    Get PDF
    The NASA technology originally developed for the optimization of composite structures (engine blades) is adapted and applied to the optimization of orthopedic knee implants. A method is developed enabling the tailoring of the implant for optimal interaction with the environment of the tibia. The shape of the implant components are optimized, such that the stresses in the bone are favorably controlled to minimize bone degradation and prevent failures. A pilot tailoring system is developed and the feasibility of the concept is elevated. The optimization system is expected to provide the means for improving knee prosthesis and individual implant tailoring for each patient

    Noncommutative geometry and motives: the thermodynamics of endomotives

    Get PDF
    We combine aspects of the theory of motives in algebraic geometry with noncommutative geometry and the classification of factors to obtain a cohomological interpretation of the spectral realization of zeros of LL-functions. The analogue in characteristic zero of the action of the Frobenius on l-adic cohomology is the action of the scaling group on the cyclic homology of the cokernel (in a suitable category of motives) of a restriction map of noncommutative spaces. The latter is obtained through the thermodynamics of the quantum statistical system associated to an endomotive (a noncommutative generalization of Artin motives). Semigroups of endomorphisms of algebraic varieties give rise canonically to such endomotives, with an action of the absolute Galois group. The semigroup of endomorphisms of the multiplicative group yields the Bost-Connes system, from which one obtains, through the above procedure, the desired cohomological interpretation of the zeros of the Riemann zeta function. In the last section we also give a Lefschetz formula for the archimedean local L-factors of arithmetic varieties.Comment: 52 pages, amslatex, 1 eps figure, v2: final version to appea

    Partisan Polarization And Resistance To Elite Messages: Results From Survey Experiments On Social Distancing

    Get PDF
    COVID-19 compelled government officials in the U.S. and elsewhere to institute social distancing policies, shuttering much of the economy. At a time of low trust and high polarization, Americans may only support such disruptive policies when recommended by same-party politicians. A related concern is that some may resist advice from “elite” sources such as government officials or public health experts. We test these possibilities using novel data from two online surveys with embedded experiments conducted with approximately 2,000 Pennsylvania residents each, in spring 2020 (Study 1 in April and Study 2 in May-June). We uncover partisan differences in views on several coronavirus-related policies, which grew larger between surveys. Yet overall, Study 1 respondents report strong support for social distancing policies and high trust in medical experts. Moreover, an experiment in Study 1 finds no evidence of reduced support for social distancing policies when advocated by elites, broadly defined. A second experiment in Study 2 finds no backlash for a policy described as being backed by public health experts, but a cross-party decline in support for the same policy when backed by government officials. This suggests that, in polarized times, public health experts might be better advocates for collectively beneficial public policies during public health crises than government officials

    How Do Disks Survive Mergers?

    Full text link
    We develop a physical model for how galactic disks survive and/or are destroyed in interactions. Based on dynamical arguments, we show gas primarily loses angular momentum to internal torques in a merger. Gas within some characteristic radius (a function of the orbital parameters, mass ratio, and gas fraction of the merging galaxies), will quickly lose angular momentum to the stars sharing the perturbed disk, fall to the center and be consumed in a starburst. A similar analysis predicts where violent relaxation of the stellar disks is efficient. Our model allows us to predict the stellar and gas content that will survive to re-form a disk in the remnant, versus being violently relaxed or contributing to a starburst. We test this in hydrodynamic simulations and find good agreement as a function of mass ratio, orbital parameters, and gas fraction, in simulations spanning a wide range in these properties and others, including different prescriptions for gas physics and feedback. In an immediate sense, the amount of disk that re-forms can be understood in terms of well-understood gravitational physics, independent of details of ISM gas physics or feedback. This allows us to explicitly quantify the requirements for such feedback to (indirectly) enable disk survival, by changing the pre-merger gas content and distribution. The efficiency of disk destruction is a strong function of gas content: we show how and why sufficiently gas-rich major mergers can, under general conditions, yield systems with small bulges (B/T<0.2). We provide prescriptions for inclusion of our results in semi-analytic models.Comment: 32 pages, 16 figures, accepted to ApJ (minor revisions to match accepted version

    A Theoretical Interpretation of the Black Hole Fundamental Plane

    Full text link
    We examine the origin and evolution of correlations between properties of supermassive black holes (BHs) and their host galaxies using simulations of major galaxy mergers, including the effects of gas dissipation, cooling, star formation, and BH accretion and feedback. We demonstrate that the simulations predict the existence of a BH 'fundamental plane' (BHFP), of the form M_BH sigma^(3.0+-0.3)*R_e^(0.43+-0.19) or M_BH M_bulge^(0.54+-0.17)*sigma^(2.2+-0.5), similar to relations found observationally. The simulations indicate that the BHFP can be understood roughly as a tilted intrinsic correlation between BH mass and spheroid binding energy, or the condition for feedback coupling to power a pressure-driven outflow. While changes in halo circular velocity, merger orbital parameters, progenitor disk redshifts and gas fractions, ISM gas pressurization, and other parameters can drive changes in e.g. sigma at fixed M_bulge, and therefore changes in the M_BH-sigma or M_BH-M_bulge relations, the BHFP is robust. Given the empirical trend of decreasing R_e for a given M_bulge at high redshift, the BHFP predicts that BHs will be more massive at fixed M_bulge, in good agreement with recent observations. This evolution in the structural properties of merger remnants, to smaller R_e and larger sigma (and therefore larger M_BH, conserving the BHFP) at a given M_bulge, is driven by the fact that bulge progenitors have characteristically larger gas fractions at high redshifts. Adopting the observed evolution of disk gas fractions with redshift, our simulations predict the observed trends in both R_e(M_bulge) and M_BH(M_bulge).Comment: 22 pages, 19 figures, replaced with version accepted to ApJ. Companion paper to arXiv:0707.400

    Preface To Special Issue On Global Political-Economy Of Food

    Get PDF

    The Failure Of Regime Transformation: A Reply

    Get PDF

    Silicon materials task of the low cost solar array project, part 2

    Get PDF
    Purity requirements for solar cell grade silicon material was developed and defined by evaluating the effects of specific impurities and impurity levels on the performance of silicon solar cells. Also, data was generated forming the basis for cost-tradeoff analyses of silicon solar cell material. Growth, evaluation, solar cell fabrication and testing was completed for the baseline boron-doped Czochralski material. Measurements indicate Cn and Mn seriously degrade cell performance, while neither Ni nor Cu produce any serious reduction in cell efficiency
    corecore