333 research outputs found

    Lower Extremity Muscle Strength and Risk of Self-Reported Hip or Knee Osteoarthritis

    Get PDF
    Purpose: The purpose of this study was to investigate the gender-specific longitudinal association between quadriceps strength and self-reported, physician-diagnosed hip or knee osteoarthritis (OA). Methods: Subjects were 3081 community-dwelling adults who were free of OA, joint symptoms and injuries, completed a maximum treadmill exercise test, had isokinetic knee extension and flexion and isotonic leg press strength measurements taken at baseline and returned at least one written follow-up survey. Multivariate logistic regression was used to estimate odds ratios and 95% confidence intervals. Results: Women with moderate or high isokinetic quadriceps strength had a significantly reduced risk (55% to 64%) of hip or knee OA. A similar, nonsignificant trend was noted among men. Moderate isotonic leg press strength was protective for hip or knee osteoarthritis among men only. Conclusions: These results suggest that quadriceps weakness is an independent and modifiable risk factor for lower extremity OA, particularly among women

    Knee joint coordination during single-leg landing in different directions

    Get PDF
    Knee joint coordination during jump landing in different directions is an important consideration for injury prevention. The aim of the current study was to investigate knee and hip kinematics on the non-dominant and dominant limbs during landing. A total of 19 female volleyball athletes performed single-leg jump-landing tests in four directions; forward (0°), diagonal (30° and 60°) and lateral (90°) directions. Kinematic and ground reaction force data were collected using a 10-camera Vicon system and an AMTI force plate. Knee and hip joint angles, and knee angular velocities were calculated using a lower extremity model in Visual3D. A two factor repeated measures ANOVA was performed to explore limb dominance and jump direction. Significant differences were seen between the jump directions for; angular velocity at initial contact (p < 0.001), angular velocity at peak vertical ground reaction force (p < 0.001), and knee flexion excursion (p = 0.016). Knee coordination was observed to be poorer in the early phase of velocity-angle plot during landing in lateral direction compared to forward and diagonal directions. The non-dominant limb seemed to have better coordination than the dominant limb during multi-direction jump landing. Therefore, dominant limbs appear to be at a higher injury risk than non-dominant limbs

    The effect of proprioceptive knee bracing on knee stability during three different sport related movement tasks in healthy subjects and the implications to the management of Anterior Cruciate Ligament (ACL) injuries

    Get PDF
    Abstract Introduction: Proprioceptive knee braces have been shown to improve knee mechanics, however much of the work to date has focused on tasks such as slow step down tasks rather than more dynamic sporting tasks. Objective: This study aimed to explore if such improvements in stability may be seen during faster sports specific tasks as well as slower tasks. Method: Twelve subjects performed a slow step down, single leg drop jump and pivot turn jump with and without a silicone web brace. 3D kinematics of the knee were collected using a ten camera Qualisys motion analysis system. Reflective markers were placed on the foot, shank, thigh and pelvis using the Calibrated Anatomical Systems Technique. A two way ANOVA with repeated measures was performed with post-hoc pairwise comparison to explore the differences between the two conditions and three tasks. Results: Significant differences were seen in the knee joint angles and angular velocities in the sagittal, coronal and transverse planes between the tasks. The brace showed a reduction in knee valgum and internal rotation across all tasks, with the most notable effect during the single leg drop jump and pivot turn jump. The transverse plane also showed a significant reduction in the external rotation knee angular velocity when wearing the brace. Discussion: The brace influenced the knee joint kinematics in coronal and transverse planes which confirms that such braces can have a significant effect on knee control during dynamic tasks. Further studies are required exploring the efficacy of proprioceptive braces in athletic patient cohort. Acknowledgements This study is partly founded by Erasmus+ program who have sponsored two masters students. The braces were supplied by DJO Global, Inc. The suppliers played no role in the design, execution, analysis and interpretation of the data or writing of this study

    The prevalence and functional impact of musculoskeletal conditions amongst clients of a primary health care facility in an under-resourced area of Cape Town

    Get PDF
    BACKGROUND:The extent of disease burden of musculoskeletal conditions (MSC) not due to injury has not been well determined in sub-Saharan Africa. The 1999 Global Burden of Disease study estimated the prevalence of osteoarthritis and rheumatoid arthritis to be 150/100,000 compared to 1,500/100,000 in Europe. The objective of the study was to determine the prevalence of MSC and the functional implications in a sample of people attending community health centres in Cape Town, South Africa. METHODS: A cross-sectional, descriptive study was conducted in clinics in two resource poor communities. Phase I consisted of screening and those who screened positive for peripheral or spinal joint pain went on to complete Phase II, which included the Stanford Health Assessment Questionnaire. RESULTS: 1005 people were screened in Phase I. Of these, 362 (36%) reported MSC not due to injury in the past three months. Those with MSC had higher rates of co-morbidities in every category than those without. The mean Disability Index for those with MSC was mild to moderate and moderate to severe in those over 55 years. CONCLUSIONS: Although the sample may not be representative of the general community, the prevalence is considerably greater than those reported elsewhere even when the population of the catchment area is used as a denominator, (367/100 000). The common presentation of MSC with co-morbid diabetes and hypertension requires holistic management by appropriately trained health care practitioners. Any new determination of burden of disease due to MSC should recognise that these disorders may be more prevalent in developing countries than previously estimated

    Effect of foot orthoses on lower extremity kinetics during running: a systematic literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Throughout the period of one year, approximately 50% of recreational runners will sustain an injury that disrupts their training regimen. Foot orthoses have been shown to be clinically effective in the prevention and treatment of several running-related conditions, yet the physical effect of this intervention during running remains poorly understood. The aim of this literature review was therefore to evaluate the effect of foot orthoses on lower extremity forces and pressure (kinetics) during running.</p> <p>Methods</p> <p>A systematic search of electronic databases including Medline (1966-present), CINAHL, SportDiscus, and The Cochrane Library occurred on 7 May 2008. Eligible articles were selected according to pre-determined criteria. Methodological quality was evaluated by use of the Quality Index as described by Downs & Black, followed by critical analysis according to outcome variables.</p> <p>Results</p> <p>The most widely reported kinetic outcomes were loading rate and impact force, however the effect of foot orthoses on these variables remains unclear. In contrast, current evidence suggests that a reduction in the rearfoot inversion moment is the most consistent kinetic effect of foot orthoses during running.</p> <p>Conclusion</p> <p>The findings of this review demonstrate systematic effects that may inform the direction of future research, as further evidence is required to define the mechanism of action of foot orthoses during running. Continuation of research in this field will enable targeting of design parameters towards biomechanical variables that are supported by evidence, and may lead to advancements in clinical efficacy.</p

    Lower limb biomechanics during running in individuals with Achilles tendinopathy: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal lower limb biomechanics is speculated to be a risk factor for Achilles tendinopathy. This study systematically reviewed the existing literature to identify, critique and summarise lower limb biomechanical factors associated with Achilles tendinopathy.</p> <p>Methods</p> <p>We searched electronic bibliographic databases (Medline, EMBASE, Current contents, CINAHL and SPORTDiscus) in November 2010. All prospective cohort and case-control studies that evaluated biomechanical factors (temporospatial parameters, lower limb kinematics, dynamic plantar pressures, kinetics [ground reaction forces and joint moments] and muscle activity) associated with mid-portion Achilles tendinopathy were included. Quality of included studies was evaluated using the Quality Index. The magnitude of differences (effect sizes) between cases and controls was calculated using Cohen's d (with 95% CIs).</p> <p>Results</p> <p>Nine studies were identified; two were prospective and the remaining seven case-control study designs. The quality of 9 identified studies was varied, with Quality Index scores ranging from 4 to 15 out of 17. All studies analysed running biomechanics. Cases displayed increased eversion range of motion of the rearfoot (d = 0.92 and 0.67 in two studies), reduced maximum lower leg abduction (d = -1.16), reduced ankle joint dorsiflexion velocity (d = -0.62) and reduced knee flexion during gait (d = -0.90). Cases also demonstrated a number of differences in dynamic plantar pressures (primarily the distribution of the centre of force), ground reaction forces (large effects for timing variables) and also showed reduced peak tibial external rotation moment (d = -1.29). Cases also displayed differences in the timing and amplitude of a number of lower limb muscles but many differences were equivocal.</p> <p>Conclusions</p> <p>There are differences in lower limb biomechanics between those with and without Achilles tendinopathy that may have implications for the prevention and management of the condition. However, the findings need to be interpreted with caution due to the limited quality of a number of the included studies. Future well-designed prospective studies are required to confirm these findings.</p

    Dietary Intakes of Total and Specific Lignans Are Associated with Clinical Breast Tumor Characteristics 1-3

    Get PDF
    . There were significant differences in the contribution to these effects by specific lignans, especially matairesinol and lariciresinol. In summary, in this case-control study of dietary lignan intakes and breast cancer, we found that higher lignan intakes were associated with lower risks of breast cancer with more favorable prognostic characteristics. Future investigations are warranted to explore the strong associations observed with ER 2 cancer in premenopausal women. J. Nutr. 142: 91-98, 2012

    Risk prediction model for knee pain in the Nottingham Community: a Bayesian modeling approach

    Get PDF
    Background: 25% of the British population over the age of 50 experience knee pain. It can limit physical ability, cause distress and bears significant socioeconomic costs. Knee pain, not knee osteoarthritis (KOA) is the all to common malady. The objectives of this study were to develop and validate the first risk prediction model for incident knee pain in the Nottingham community and validate this internally within the Nottingham cohort and externally within the Osteoarthritis Initiaitve (OAI) Cohort. Methods: 1822 participants at risk for knee pain from the Nottingham community were followed up for 12 years. Of this cohort, 2/3 (n=1203) were used to develop the risk prediction model and 1/3 (n=619) were used to validate the model. Incident knee pain was defined as pain on most days for at least one month in the past 12 months. Predictors were age, gender, body mass index (BMI), pain elsewhere, prior knee injury and knee alignment. Bayesian logistic regression model was used to determine the probability of an odds ratio >1. The Hosmer-Lemeshow x2 statistic (HLS) was used for calibration and receiver operator characteristics (ROC) was used for discrimination. The OAI cohort was used to examine the performance of the model in a secondary care population. Results: A risk prediction model for knee pain incidence was developed using a Bayesian approach. The model had good calibration with HLS of 7.17 (p=0.52) and moderate discriminative abilities (ROC 0.70) in the community. Individual scenarios are given using the model. However, the model had poor calibration (HLS 5866.28, p<0.01) and poor discriminative ability (ROC 0.54) in the OAI secondary care dataset. Conclusion: This is the first risk prediction model for knee pain, irrespective of underlying structural changes of KOA, in the community using a Bayesian modelling approach. The model appears to work well in a community-based population but not in a hospital derived cohort and may provide a convenient tool for primary care to predict the risk of knee pain in the general population
    corecore