198 research outputs found

    The Local Universe as Seen in Far-Infrared and in Far-Ultraviolet: A Global Point of View on the Local Recent Star Formation

    Get PDF
    We select far-infrared (FIR-60 microns) and far-ultraviolet (FUV-1530 A) samples of nearby galaxies in order to discuss the biases encountered by monochromatic surveys (FIR or FUV). Very different volumes are sampled by each selection and much care is taken to apply volume corrections to all the analyses. The distributions of the bolometric luminosity of young stars are compared for both samples: they are found to be consistent with each other for galaxies of intermediate luminosities but some differences are found for high (>5 10^{10} L_sun) luminosities. The shallowness of the IRAS survey prevents us from securing comparison at low luminosities (<2 10^9 L_sun). The ratio of the total infrared (TIR) luminosity to the FUV luminosity is found to increase with the bolometric luminosity in a similar way for both samples up to 5 10^{10} L_sun. Brighter galaxies are found to have a different behavior according to their selection: the L_TIR/L_FUV ratio of the FUV-selected galaxies brighter than 5 10^{10} L_sun reaches a plateau whereas L_TIR/L_FUV continues to increase with the luminosity of bright galaxies selected in FIR. The volume-averaged specific star formation rate (SFR per unit galaxy stellar mass, SSFR) is found to decrease toward massive galaxies within each selection. The SSFR is found to be larger than that measured for optical and NIR-selected sample over the whole mass range for the FIR selection, and for masses larger than 10^{10} M_sun for the FUV selection. Luminous and massive galaxies selected in FIR appear as active as galaxies with similar characteristics detected at z ~ 0.7.Comment: 32 pages, 9 figures, to be published in the Astrophysical Journal Supplement series dedicated to GALEX result

    Extinction Corrected Star Formation Rates Empirically Derived from Ultraviolet-Optical Colors

    Get PDF
    Using a sample of galaxies from the Sloan Digital Sky Survey spectroscopic catalog with measured star-formation rates (SFRs) and ultraviolet (UV) photometry from the GALEX Medium Imaging Survey, we derived empirical linear correlations between the SFR to UV luminosity ratio and the UV-optical colors of blue sequence galaxies. The relations provide a simple prescription to correct UV data for dust attenuation that best reconciles the SFRs derived from UV and emission line data. The method breaks down for the red sequence population as well as for very blue galaxies such as the local ``supercompact'' UV luminous galaxies and the majority of high redshift Lyman Break Galaxies which form a low attenuation sequence of their own.Comment: 20 pages, 11 figures, accepted for publication in the ApJS GALEX special issu

    The GALEX-VVDS Measurement of the Evolution of the 1500A Luminosity Function

    Full text link
    We present the first measurement of the galaxy luminosity function at 1500A between 0.2<z<1.2 based on GALEX-VVDS observations (1000 spectroscopic redshifts for galaxies with NUV<24.5) and at higher z using existing datasets. Our main results are summarized as follows : (i) luminosity evolution is observed with Delta(Mstar)=-2.0 mag between z=0 and z=1 and Delta(Mstar)=-1.0mag between z=1 and z=3. This confirms that the star formation activity was significantly higher in the past. (ii) the LF slopes vary between -1.2< alpha <-1.65, with a marginally significant hint of increase at higher z. (iii) we split the sample in three restframe (B-I) intervals providing an approximate spectral type classification: Sb-Sd, Sd-Irr and unobscured starbursts. We find that the bluest class evolves less strongly in luminosity than the two other classes. On the other hand their number density increases sharply with z (15% in the local universe to 55% at z=1) while that of the reddest classes decreases.Comment: 4 pages, 4 figures. This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue.Links to the full set of papers will be available at : http://www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200

    Turbulence and galactic structure

    Full text link
    Interstellar turbulence is driven over a wide range of scales by processes including spiral arm instabilities and supernovae, and it affects the rate and morphology of star formation, energy dissipation, and angular momentum transfer in galaxy disks. Star formation is initiated on large scales by gravitational instabilities which control the overall rate through the long dynamical time corresponding to the average ISM density. Stars form at much higher densities than average, however, and at much faster rates locally, so the slow average rate arises because the fraction of the gas mass that forms stars at any one time is low, ~10^{-4}. This low fraction is determined by turbulence compression, and is apparently independent of specific cloud formation processes which all operate at lower densities. Turbulence compression also accounts for the formation of most stars in clusters, along with the cluster mass spectrum, and it gives a hierarchical distribution to the positions of these clusters and to star-forming regions in general. Turbulent motions appear to be very fast in irregular galaxies at high redshift, possibly having speeds equal to several tenths of the rotation speed in view of the morphology of chain galaxies and their face-on counterparts. The origin of this turbulence is not evident, but some of it could come from accretion onto the disk. Such high turbulence could help drive an early epoch of gas inflow through viscous torques in galaxies where spiral arms and bars are weak. Such evolution may lead to bulge or bar formation, or to bar re-formation if a previous bar dissolved. We show evidence that the bar fraction is about constant with redshift out to z~1, and model the formation and destruction rates of bars required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess, Dordrecht: Kluwer, in press (presented at a conference in South Africa, June 7-12, 2004). 19 pgs, 5 figure

    SPIRE imaging of M82: cool dust in the wind and tidal streams

    Get PDF
    M82 is a unique representative of a whole class of galaxies, starbursts with superwinds, in the Very Nearby Galaxy Survey with Herschel. In addition, its interaction with the M81 group has stripped a significant portion of its interstellar medium from its disk. SPIRE maps now afford better characterization of the far-infrared emission from cool dust outside the disk, and sketch a far more complete picture of its mass distribution and energetics than previously possible. They show emission coincident in projection with the starburst wind and in a large halo, much more extended than the PAH band emission seen with Spitzer. Some complex substructures coincide with the brightest PAH filaments, and others with tidal streams seen in atomic hydrogen. We subtract the far-infrared emission of the starburst and underlying disk from the maps, and derive spatially-resolved far-infrared colors for the wind and halo. We interpret the results in terms of dust mass, dust temperature, and global physical conditions. In particular, we examine variations in the dust physical properties as a function of distance from the center and the wind polar axis, and conclude that more than two thirds of the extraplanar dust has been removed by tidal interaction, and not entrained by the starburst wind.Comment: accepted in A&A Herschel special issu

    Persistence Increases with Diversity and Connectance in Trophic Metacommunities

    Get PDF
    We are interested in understanding if metacommunity dynamics contribute to the persistence of complex spatial food webs subject to colonization-extinction dynamics. We study persistence as a measure of stability of communities within discrete patches, and ask how do species diversity, connectance, and topology influence it in spatially structured food webs.We answer this question first by identifying two general mechanisms linking topology of simple food web modules and persistence at the regional scale. We then assess the robustness of these mechanisms to more complex food webs with simulations based on randomly created and empirical webs found in the literature. We find that linkage proximity to primary producers and food web diversity generate a positive relationship between complexity and persistence in spatial food webs. The comparison between empirical and randomly created food webs reveal that the most important element for food web persistence under spatial colonization-extinction dynamics is the degree distribution: the number of prey species per consumer is more important than their identity.With a simple set of rules governing patch colonization and extinction, we have predicted that diversity and connectance promote persistence at the regional scale. The strength of our approach is that it reconciles the effect of complexity on stability at the local and the regional scale. Even if complex food webs are locally prone to extinction, we have shown their complexity could also promote their persistence through regional dynamics. The framework we presented here offers a novel and simple approach to understand the complexity of spatial food webs

    The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate

    Get PDF
    In a companion paper (Arnouts et al. 2004) we presented new measurements of the galaxy luminosity function at 1500 Angstroms out to z~1 using GALEX-VVDS observations (1039 galaxies with NUV0.2) and at higher z using existing data sets. In this paper we use the same sample to study evolution of the FUV luminosity density. We detect evolution consistent with a (1+z)^{2.5+/-0.7} rise to z~1 and (1+z)^{0.5+/-0.4} for z>1. The luminosity density from the most UV-luminous galaxies (UVLG) is undergoing dramatic evolution (x30) between 0<z<1. UVLGs are responsible for a significant fraction (>25%) of the total FUV luminosity density at z<1. We measure dust attenuation and star formation rates of our sample galaxies and determine the star formation rate density as a function of redshift, both uncorrected and corrected for dust. We find good agreement with other measures of the SFR density in the rest ultraviolet and Halpha given the still significant uncertainties in the attenuation correction.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of papers will be available at http://www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200

    Spectral energy distribution and radio halo of NGC253 at low radio frequencies

    Get PDF
    A. D. Kapinska, 'Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies', The Astrophysical Journal, Vol. 838(68), 15 pp, March 2017. The version of record is available online at doi: https://doi.org/10.3847/1538-4357/aa5f5d. © 2017. The American Astronomical Society. All rights reserved.We present new radio continuum observations of NGC253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of central starburst and extended emission. The central component, corresponding to the inner 500pc of the starburst region of the galaxy, is best modelled as an internally free-free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the NGC253 spectrum is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the SE halo, and may be indicative of synchrotron self-absorption of shock re-accelerated electrons or an intrinsic low-energy cut off of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC253 in our radio images. At 154 - 231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ~8kpc in z-direction (from major axis).Peer reviewedFinal Published versio
    corecore