50 research outputs found

    Polyhydroxybutyrate (PHB) produced from red grape pomace: Effect of purification processes on structural, thermal and antioxidant properties.

    Get PDF
    Red grape pomace was used as a source for poly(3-hydroxybutyrate) (PHB) production, which was then subject to a range of purification processes. The different PHB biopolymers were characterized for chemical structure, crystallinity, thermal properties, colour, release of compounds into different food simulants and antioxidant inhibition, and comparisons were made with a commercially available PHB. An increase in purification steps did not have a significant effect on the high thermal stability of the extracted biopolymer, but it decreased the degree of crystallinity and the presence of amino acids and aromatic compounds. With additional purification, the PHB powders also whitened and the number of components released from the biopolymer into food simulants decreased. The released compounds presented antioxidant inhibition, which has not been previously reported in the literature or with commercially available polyhydroxyalkanoates. This is of great interest for food packaging and biomedical industries where the addition of antioxidant additives to improve PHB functional properties may not be necessary and could be avoided.The authors would like to thank the Ministry of Business, Innovation and Employment of New Zealand (MBIE, Biocide Toolbox programme), the Basque Government (KK-2021/00131 and IT1658-22) and PID2021-124294OB-C22 project funded by MCIN/AEI/10.13039/501100011033/FEDER, UE. A.E. thanks the State Research Agency of Spain within the Juan de la Cierva - Incorporation action (IJC2019-039697I)

    Vulpeculin: a novel and abundant lipocalin in the urine of the common brushtail possum, Trichosurus vulpecula.

    Get PDF
    Lipocalins are a family of secreted proteins. They are capable of binding small lipophilic compounds and have been extensively studied for their role in chemosignalling in rodent urine. Urine of the common brushtail possum (Trichosurus vulpecula) contains a prominent glycoprotein of 20 kDa, expressed in both sexes. We have isolated this protein and determined its primary sequence by mass spectrometry, including the use of metabolic labelling to resolve the leucine/isoleucine isobaric ambiguity. The protein sequence was identified as a lipocalin, and phylogenetic analysis grouped the protein with other marsupial lipocalin sequences in a phylogenetic clade distinct from established cross-species lipocalin sub-families. The pattern of expression in possum urine and the similarity in sequence and structure to other lipocalins suggests this protein may have a role in brushtail possum chemosignalling

    Disruption of the potassium channel regulatory subunit Kcne2 causes iron-deficient anemia

    Get PDF
    Iron homeostasis is a dynamic process that is tightly controlled to balance iron uptake, storage, and export. Reduction of dietary iron from the ferric to the ferrous form is required for uptake by solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 (Slc11a2) into the enterocytes. Both processes are proton dependent and have led to the suggestion of the importance of acidic gastric pH for the absorption of dietary iron. Potassium voltage-gated channel subfamily E, member 2 (KCNE2), in combination with potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1), form a gastric potassium channel essential for gastric acidification. Deficiency of either Kcne2 or Kcnq1 results in achlorhydia, gastric hyperplasia, and neoplasia, but the impact on iron absorption has not, to our knowledge, been investigated. Here we report that Kcne2-deficient mice, in addition to the previously reported phenotypes, also present with iron-deficient anemia. Interestingly, impaired function of KCNQ1 results in iron-deficient anemia in Jervell and Lange-Nielsen syndrome patients. We speculate that impaired function of KCNE2 could result in the same clinical phenotype

    The Concise Guide to PHARMACOLOGY 2023/24:Introduction and Other Protein Targets

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.</p

    Mechanisms underlying a thalamocortical transformation during active tactile sensation

    Get PDF
    During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15537. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Polyhydroxyalkanoate granules : surface protein topology and rational design of functionalised biobeads : a thesis presented to Massey University in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Microbiology at Massey University, Manawatu, New Zealand

    Get PDF
    Chapter 6 excluded due to copyright reasons. Available as: Hooks, D. O. & Rehm, B. H. A. (2015). Surface display of highly-stable Desulfovibrio vulgaris carbonic anhydrase on polyester beads for carbon dioxide capture. Biotechnology Letters, 37(7), p. 1415-1421. doi:10.1007/s10529-015-1803-7This thesis examined aspects of the polyhydroxyalkanoate (PHA) biobead system for immobilisation of proteins. Three separate studies have expanded the scope of this platform technology into different applications. New flexible regions along the length of the PhaC protein were discovered and functionalised with IgG binding domains. The bioremediation and fine-chemical synthesis aspects of the PHA biobeads were developed with active enzymes of interest immobilised to the bead surface. Additionally, functional dual fusion of enzymes to both the N- and C-terminus of PhaC was demonstrated for the first time. The enhanced scope of the PHA biobeads will lead to further applications in fields such as protein purification, vaccines, and diagnostics. The first study assessed the ability of the PHA synthase (PhaC) based immobilisation system to tolerate dual enzyme fusions allowing the recapitulation of a biosynthetic pathway. N-acetyl neuraminic acid aldolase and N-acetyl glucosamine 2-epimerase allow for the synthesis of the medically relevant fine-chemical N-acetyl neuraminic acid (Neu5Ac). Ultimately, biobeads establishing the entire Neu5Ac synthesis pathway were able to convert up to 22% of the initial N-acetyl glucosamine into Neu5Ac which compares favourably with the theoretical maximum from chemi-enzymatic synthesis of 33%. Despite intense research interest, the structure of PhaC has not yet been solved. Structural information of the exposed regions of granule-associated PhaC was gathered by the application of biotinylation labels. Six amino acid sites were found to be surface exposed and four were able to tolerate FLAG-tag insertion. Three of these sites were chosen to functionalise with the IgG binding domain. These beads were able to mediate the binding and elution of IgG, with a maximum capacity of 16 mg IgG/g wet PHA beads. The enhanced carbonic anhydrase from Desulfovibrio vulgaris str. "Miyazaki F" (DvCA) was fused the N-terminus of PhaC and immobilised on the surface of PHA beads. The DvCA beads had a specific activity of 114 U/mg enzyme. PHA-immobilised DvCA retained 54% of its initial activity after incubation at 90 °C for 1 h and 77% of its initial activity after incubation at pH 12 for 30 min. This stability indicates its usefulness in the challenging industrial environments where it may be deployed

    Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium.

    Get PDF
    Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI) to insoluble and relatively non-toxic Cr(III), bacterial bioremediation of Cr(VI) pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI) remediation. To identify novel Cr(VI) reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI) indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI) reductase (k(cat)/K(M)= 1.1×10(5) M(-1) s(-1) with NADH as cofactor). Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI) remediation

    Cr(VI) transformation by PHA beads displaying functional NemA_Ec fused to covalently tethered PhaC from <i>R. eutropha</i>.

    No full text
    <p>65 µg of PHA beads displaying NemA_Ec were incubated with 150 µM potassium chromate, 15 µg FDH, 5 mM formic acid and 50 µM NAD<sup>+</sup> in 0.5 ml of 100 mM sodium phosphate buffer (pH 7) and incubated at 22°C for 75 min. The concentration of Cr(VI) remaining at each of the time-points indicated was measured by diphenyl carbazide assay. Data are the mean of three independent replicates, and error bars indicate ±1 standard deviation.</p
    corecore