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Abstract 

 

Iron homeostasis is a dynamic process that is tightly controlled to balance iron 

uptake, storage and export. Reduction of dietary iron from the ferric to the ferrous 

form is required for uptake by solute carrier family 11 (proton-coupled divalent metal 

ion transporters) member 2 (Slc11a2) into the enterocytes. Both processes are proton 

dependent, and have led to the suggestion of the importance of acidic gastric pH for 

the absorption of dietary iron. Kcne2, in combination with Kcnq1, form a gastric 

potassium channel essential for gastric acidification. Deficiency of either Kcne2 or 

Kcnq1 results in achlorhydia, gastric hyperplasia and neoplasia, but the impact on iron 

absorption has not been investigated. Here we report that Kcne2 deficient mice, in 

addition to the previously reported phenotypes, also present with iron-deficient 

anemia. Interestingly impaired function of KCNQ1 results in iron deficient anemia in 

Jervell and Lange-Nielsen syndrome patients. We speculate that impaired function of 

KCNE2 could result in the same clinical phenotype. 
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Introduction 

 

Iron is imperative for human health and defects in iron homeostasis are known 

to result in serious pathological abnormalities such as hemochromatosis and anemia. 

This dynamic process requires a constant balance of iron achieved by both intake of 

dietary iron and successful co-ordination of iron uptake, export, and storage. Iron-

deficient anemia can be caused by a lack of dietary iron, blood loss or a physiological 

defect affecting iron bioavailability, uptake, or transfer into the circulation. The 

majority of dietary iron is in the ferric form and requires reduction to the ferrous form 

prior to being transported by Slc11a2 located in the brush border of the enterocytes 

[1]. 

Kcne2 is a single-pass integral membrane β-subunit of a potassium ion-

channel and assembles with various α-subunits. In a heterotrimeric channel with 

Kcnq1, Kcne2 forms a constitutive potassium ion-channel at the apical membrane of 

gastric parietal cells [2]. This Kcne2/Kcnq1 potassium channel provides a constant 

source of potassium ions into the stomach lumen, which are used by the gastric 

K+/H+-ATPase to pump hydrogen ions into the stomach lumen [3]. Point mutations in 

KCNE2 have been shown to cause Long QT Syndrome 6 [4], a phenotype 

recapitulated in knockout mouse models of Kcne2 [5]. In addition, Kcne2 deficient 

mice have been reported to have gastric hyperplasia and neoplasia, achlorhydria [3, 
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6], anemia [7] and hypothyroidism [8]. Gastric pH has been suggested to be a critical 

determinant for dietary iron absorption, a theory supported by the observation that the 

sublytic mouse model, with a point mutation in Atp4a (K+/H+-ATPase α-subunit), has 

increased gastric pH and iron-deficient anemia [9]. 

In this study we have generated a targeted gene trap for Kcne2 and identified 

that mutant male animals suffer from iron-deficient anemia. 
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Materials and methods 

 

Animals 

Generation of the Kcne2tm1a(EUCOMM)Wtsi allele (hereafter referred to as 

Kcne2tm1a) was performed as part of the EUCOMM/KOMP projects and Sanger 

Mouse Genetics Project [10].  Mice were generated from ES cell clone 

EPD0156_2_F10 and backcrossed to C57BL/6N females with genotyping carried out 

as previously described [11]. Animals were housed in specific pathogen-free 

conditions and placed on high fat diet (Western RD 829100, Special Diet Services, 

U.K) from four weeks of age with ad libitum access to autoclaved non-acidified water 

and food and phenotyped according to a standard pipeline as previously reported [12]. 

All experiments were performed in accordance with the UK Home Office regulations, 

UK Animals (Scientific Procedures) Act 1986. 

 

Blood sample collection 

At 16 weeks, blood was collected by puncture of the retro-orbital sinus under 

terminal anaesthesia within 1-3 hours of lights on, and collected into EDTA-coated 

tubes (Kabe Labortechnik GmbH, Numbrecht, Germany) for hematology (Scil 

Vetabc, Montpellier, France) and into heparinised tubes (Kabe Labortechnik GmbH) 

for plasma preparation. A total of 26 parameters were determined from plasma using 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

an Olympus AU400 analyser (Beckman Coulter Ltd, High Wycombe, UK). Insulin 

and erythropoietin were determined using a Meso Scale Discovery array (Rockville, 

MD, USA) and IL-6 was measured by ELISA (eBioscience Ltd, Hatfield, UK). 

 

Histopathology 

Full necropsy was performed on two male and two female Kcne2tm1a/tm1a and 

two controls of each sex. All tissues were collected, fixed in formalin and embedded 

in paraffin wax according to standard protocols. Sections were cut and stained with 

haematoxylin and eosin or Perls’ Prussian blue according to standard methods.  

 

Data analysis and statistics 

For all data, except transferrin, ferritin and erythropoietin, the impact of 

genotype was assessed using a mixed model framework as described [13]. For each 

phenotypic trait tested, the global P-value was adjusted to account for multiple 

comparisons to control the false discovery rate to 5% (R function: P=0.0163) and is 

reported in the text, the genotype P value is indicated on the figures and the full 

details are listed in table 1. Transferrin, ferritin and erythropoietin were analysed 

using a one-way ANOVA using Sidak’s multiple comparisons test and adjusting for 

multiple testing using Prism v6 (GraphPad, San Diego, CA, USA). 

 

Results and Discussion 
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Seven hematological parameters were significantly different in male 

Kcne2tm1a/tm1a mutants compared to controls (Table 1 and Supplementary Table 1). 

There was a decrease in the red blood cell count (P=4.35x10-4, Fig 1A), hemoglobin 

(P=3.60x10-4, Fig 1B), hematocrit (P=7.30x10-4, Fig 1C) and mean corpuscular 

hemoglobin (P=2.96x10-3, Fig 1D). This was accompanied by increased red blood cell 

distribution width (P=0, Fig 1E) and decreased mean corpuscular volume (P=7.50x10-

4, Fig 1F). These altered red blood cell indices are indicative of hypochromic 

microcytic anemia and are in agreement with a recent report [7]. There was also 

evidence of reactive thrombocytosis with an increased platelet count in the male 

Kcne2tm1a/tm1a mutants (P=9.90x10-4, Fig 1G). Interestingly, no significant 

hematological differences were detected in females. 

We analysed in detail the plasma chemistry parameters with a focus on those 

that could correlate with anemia (Table 1 and Supplementary Table 1). There was a 

significant decrease in the plasma iron concentration in both male and female 

Kcne2tm1a/tm1a mutants compared to the controls (P=1.09x10-8, Fig 2A) suggestive of 

iron-deficient anemia. It has previously been demonstrated that Kcne2 is essential for 

gastric acid secretion and Kcne2 deficient mice have an increased stomach pH [3]. As 

it has also been demonstrated that a low gastric pH is required for absorption of 

dietary iron [9] we hypothesise that the increased gastric pH in Kcne2tm1a/tm1a mutants 

could account for the low plasma iron and iron-deficient anemia. To support this 
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finding we tested plasma ferritin, transferrin and erythropoietin. We observed a 

significant decrease in the plasma ferritin concentration in both male and female 

Kcne2tm1a/tm1a mutants compared to the controls (P<0.0001, Fig 2B). There was a 

trend to increased transferrin although this was not significant (data not shown), 

however, using the transferrin/log10(ferritin) ratio suggested to be a sensitive indicator 

of iron-deficient anemia [14], there was a significant increase in male Kcne2tm1a/tm1a 

mutants compared to the controls (P<0.0001, Fig 2C). Erythropoietin was 

significantly increased in male Kcne2tm1a/tm1a mutants compared to controls 

(P<0.0001, Fig 2D). As erythropoietin and transferrin/log10(ferritin) ratio were only 

significantly different in the males this could account, in part, for why hematological 

abnormalities were only observed in males and we hypothesize that this could be 

linked to the differential effects of sex hormones on regulating iron stores and 

erythropoiesis. Plasma magnesium was significantly increased in both male and 

female Kcne2tm1a/tm1a mutants compared to controls (P=1.62x10-5, Fig 2E), although 

the significance of this finding is unclear. In contrast to Hu et al [7] there was no 

significant difference in potassium, and no evidence of dyslipidemia or altered 

glucose tolerance (data not shown). 

To investigate other causal factors we performed a full histological assessment 

and in agreement with previous reports [3, 6] Kcne2tm1a/tm1a mutant mice display 

gastric hyperplasia, abnormal parietal cell morphology and decreased numbers of 

chief cells (data not shown). Inflammation and neutrophil infiltration in the gastric 
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mucosa was also observed in Kcne2tm1a/tm1a mutants. The abnormalities were more 

severe in the two male samples studied compared with the females (data not shown) 

and could be linked to the more extreme response of the males to high fat diet 

challenge which has been demonstrated to have a heightened inflammatory response 

in males [15]. One of the male Kcne2tm1a/tm1a mutants presented with a gastric 

adenoma (Fig 2F, box) previously observed in aged Kcne2 deficient mice [6] and 

Kcnq1 mutants [16]. There was no indication of disruptions to the small intestine villi, 

and the bone marrow and spleen did not exhibit any gross abnormalities between 

Kcne2tm1a/tm1a mutants and controls (data not shown). The liver of both controls and 

Kcne2tm1a/tm1a mutants exhibited indications of non-alcoholic fatty liver disease (data 

not shown) consistent with being placed on a high fat diet for 12 weeks [17]. Upon 

staining with Perls’ Prussian blue to assess iron stores, distinct blue staining could be 

detected in the spleen sections from controls (Fig 2G) but this was virtually 

undetectable in all four Kcne2tm1a/tm1a samples (Fig 2H). 

The link between inflammation, in particular pro-inflammatory cytokines, and 

alterations to iron homeostasis is well established [18]. As we observed inflammation 

in our histological examination of Kcne2tm1a/tm1a mutants we determined the 

concentration of cytokines in the plasma. We found that IL-6 levels were below 50 

pg/ml in all Kcne2tm1a/tm1a mutants and controls (data not shown). This further 

strengthens the view that the hematological abnormalities observed are due to iron 

deficiency and not the result of systemic inflammation. 
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In conclusion, this study has provided further evidence for the importance of 

gastric pH-regulating mechanisms in the absorption of dietary iron, the consequence 

of which is the development of iron-deficient anemia. Both sexes presented with 

decreased plasma iron whereas only the males developed anemia, we speculate this 

effect is linked to the differential effect of sex hormones on iron stores and 

erythropoiesis [19]. Interestingly these findings could be clinically relevant as it was 

recently reported that impaired function of KCNQ1 in Jervell and Lange-Nielsen 

syndrome results in iron-deficient anemia and gastric hyperplasia [15]. Given the 

similarities in the gastric phenotype of Kcne2 and Kcnq1 deficient mice we speculate 

that impaired function of KCNE2 could result in a similar clinical presentation. 
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Figure legends 

 

Table 1. Mixed model output for the significant hematology and plasma chemistry 

parameters as assessed by a significance threshold of <0.0163 on the global test 

output.  This threshold was selected to manage multiple testing and control the false 

discovery rate to 5%. The global test P value is a test of the genotype impact.  The 

methodology assesses for sexual dimorphism and, when significant (sexual 

dimorphism P value <0.05), then the model will estimate the genotype effect for each 

sex separately (see Genotype*Female and Genotype*Male) and based on the 

significance of the P values for each sex effect, the genotype effect can be classified 

(eg male only).  When sexual dimorphism was not significant, the data from both 

sexes were combined to assess the overall genotype effect (Effect of genotype). 

 

 

Figure 1. Altered hematological parameters in Kcne2tm1a/tm1a mutants. Red blood cell 

count (A), hemoglobin (B), hematocrit (C), mean corpuscular hemoglobin (D), red 

blood cell distribution width (E), mean corpuscular volume (F) and platelet count (G) 

were all determined at 16 weeks of age. P values for male control versus male 

Kcne2tm1a/tm1a are indicated with the boxplots showing the mean interquartile range, 

with whiskers to the 2.5 and 97.5 percentile and dots for outliers. For all graphs n=7 
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for female Kcne2tm1a/tm1a mutants, n=187 for female controls, n=7 for male 

Kcne2tm1a/tm1a mutants and n=202 for male controls. 

 

Figure 2. Altered plasma chemistry parameters in Kcne2tm1a/tm1a mutants. Iron (A), 

ferritin (B), transferrin/log10(ferritin) ratio (C), erythropoietin (D) and magnesium (E), 

were all determined at 16 weeks of age. P values for the genotype effect or male 

control versus male Kcne2tm1a/tm1a are indicated with the boxplots showing the mean 

interquartile range, with whiskers to the 2.5 and 97.5 percentile and dots for outliers. 

For iron, magnesium, ferritin and transferrin n=7 for Kcne2tm1a/tm1a female and male 

mutants, erythropoietin n=5 for female and n=6 for male Kcne2tm1a/tm1a mutants. For 

iron and magnesium n=186 female and n=202 male controls. Erythropoietin n=19 

female and n=21 male controls, ferritin n=21 female and n=23 male controls and 

transferrin n=22 for female and n=23 for male controls. Presence of a gastric adenoma 

(surrounded by the box), with architectural and nuclear atypia typical of a dysplastic 

adenoma, in a male Kcne2tm1a/tm1a mutant (F) and reduced iron content in spleen as 

detected by Perls’ Prussian blue stain representative image from a male control (G) 

and a male Kcne2tm1a/tm1a mutant (H). 
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Variable 
Global test Sexual 

dimorphism  Genotype Effect Genotype*Female Genotype*Male 
Classification 

P value P value 
Effect 
size 

P value 
Effect 
size 

P value 
Effect 
size 

P value 

Red blood cell count 4.35x10-4 1.00x10-4   0.523x106 0.157 -1.30x106 3.87x10-3 Males only 

Hemoglobin 3.60x10-4 2.00x10-4   0.305 0.684 -3.635 4.38x10-5 Males only 

Hematocrit 7.30x10-4 4.00x10-4   0.482 0.826 -10.117 1.00x10-4 Males only 

Mean corpuscular hemoglobin 2.96x10-3 0.0426   -0.510 0.273 -1.840 5.00x10-4 Males only 

Red blood cell distribution width 0 1.37x10-8   0.174 0.225 1.345 3.66x10-19 Males only 

Mean corpuscular volume 7.50x10-4 0.0413   -1.713 0.136 -5.033 2.20x10-5 Males only 

Platelet count 9.90x10-4 5.20x10-3   66250 0.579 5.392x105 6.44x10-5 Males only 

Iron 1.09x10-8 0.236 -14.244 2.71x10-7     Both sexes equally 

Magnesium 1.62x10-5 0.532 0.1257 1.00x10-4     Both sexes equally 

 

Table 1 
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Highlights 
 

• We have generated and phenotyped Kcne2tm1/tm1a mice  
• Kcne2tm1a/tm1a males presented with hypochromic microcytic anemia 
• Both Kcne2tm1a/tm1a males and females had decreased plasma iron 
• Only males had increased erythropoietin and transferrin/ferritin ratio 
• We believe this is due to impaired iron absorption resulting from achlorhydia 
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Variable 
Female Male 

+/+ Kcne2tm1a/tm1a +/+ Kcne2tm1a/tm1a 
N Mean ± SD N Mean ± SD N Mean ± SD N Mean ± SD 

Red blood cell count (x106/µl) 187 9.87 ± 0.68 7 10.35 ± 0.72 202 10.69 ± 0.86 7 9.28 ± 0.74 
Hemoglobin (g/dL) 187 16.2 ± 1.13 7 16.5 ± 1.40 202 16.5 ± 1.25 7 12.7 ± 1.93 

Hematocrit (%) 187 45.7 ± 3.10 7 46.1 ± 3.18 202 48.9 ± 3.94 7 37.9 ± 5.77 
Mean corpuscular hemoglobin (pg) 187 16.5 ± 0.74 7 16.0 ± 0.90 202 15.5 ± 0.76 7 13.5 ± 1.30 

Red blood cell distribution width (%) 187 11.4 ± 0.42 7 11.6 ± 0.22 202 11.5 ± 0.31 7 12.8 ± 0.59 
Mean corpuscular volume (fl) 187 46.3 ± 0.92 7 44.6 ± 1.81 202 45.8 ± 0.94 7 40.7 ± 3.82 

Platelet count (x106/µl) 187 1.18 ± 0.16 7 1.24 ± 0.17 202 1.21 ± 0.17 7 1.78 ± 0.37 
Iron (µM) 186 35.8 ± 7.7 7 23.7 ± 10.5 202 32.6 ± 5.9 7 15.4 ± 7.9 

Ferritin (ng/ml) 21 149.8 ± 28.3 7 93.4 ± 12.9 23 149.8 ± 28.3 7 95.8 ± 37.4 
Transferrin (mg/dL) 22 103.1 ± 13.1 7 101.6 ± 17.7 23 90.2 ± 12.69 7 99.8 ± 6.7 

Erythropoietin (pg/ml) 19 20.1 ± 17.8 5 42.6 ± 60.3 21 14.2 ± 15.4 6 95.2 ± 78.1 
Magnesium (mM) 186 0.88 ± 0.06 7 1.02 ± 0.07 202 0.85 ± 0.07 7 0.94 ± 0.05 

 

 

Supplementary table 1. Full breakdown of hematology and plasma chemistry parameters showing n, mean and standard deviation. 


