467 research outputs found

    An embedding scheme for the Dirac equation

    Full text link
    An embedding scheme is developed for the Dirac Hamiltonian H. Dividing space into regions I and II separated by surface S, an expression is derived for the expectation value of H which makes explicit reference to a trial function defined in I alone, with all details of region II replaced by an effective potential acting on S and which is related to the Green function of region II. Stationary solutions provide approximations to the eigenstates of H within I. The Green function for the embedded Hamiltonian is equal to the Green function for the entire system in region I. Application of the method is illustrated for the problem of a hydrogen atom in a spherical cavity and an Au(001)/Ag/Au(001) sandwich structure using basis sets that satisfy kinetic balance.Comment: 16 pages, 5 figure

    An In-Depth Spectroscopic Analysis of the Blazhko Star RR Lyr. I. Characterisation of the star: abundance analysis and fundamental parameters

    Get PDF
    The knowledge of accurate stellar parameters is a keystone in several fields of stellar astrophysics, such as asteroseismology and stellar evolution. Although the fundamental parameters can be derived both from spectroscopy and multicolour photometry, the results obtained are sometimes affected by systematic uncertainties. In this paper, we present a self-consistent spectral analysis of the pulsating star RR Lyr, which is the primary target for our study of the Blazhko effect. We used high-resolution and high signal-to-noise ratio spectra to carry out a consistent parameter determination and abundance analysis for RR Lyr. We provide a detailed description of the methodology adopted to derive the fundamental parameters and the abundances. Stellar pulsation attains high amplitudes in RR Lyrae stars, and as a consequence the stellar parameters vary significantly over the pulsation cycle. The abundances of the star, however, are not expected to change. From a set of available high-resolution spectra of RR Lyr we selected the phase of maximum radius, at which the spectra are least disturbed by the pulsation. Using the abundances determined at this phase as a starting point, we expect to obtain a higher accuracy in the fundamental parameters determined at other phases. The set of fundamental parameters obtained in this work fits the observed spectrum accurately. Through the abundance analysis, we find clear indications for a depth-dependent microturbulent velocity, that we quantified. We confirm the importance of a consistent analysis of relevant spectroscopic features, application of advanced model atmospheres, and the use of up-to-date atomic line data for the determination of stellar parameters. These results are crucial for further studies, e.g., detailed theoretical modelling of the observed pulsations.Comment: 12 pages, accepted for publication in Astronomy & Astrophysic

    Living environment, heating-cooling behaviours and well-being: Survey of older South Australians

    Get PDF
    At a time when the population is ageing and most people choose to live in their own home for as long as possible, it is important to consider various aspects of supportive and comfortable environments for housing. This study, conducted in South Australia, aims to provide information about the links between the type of housing in which older people live, the weather and occupants’ heating and cooling behaviours as well as their health and wellbeing. The study used a Computer-Assisted Telephone Interviewing (CATI) system to survey 250 people aged 65 years and over who lived in their own home. The respondents were recruited from three regions representing the three climate zones in South Australia: semi-arid, warm temperate and temperate. The results show that while the majority of respondents reported being in good health, many lived in dwellings with minimal shading and no wall insulation and appeared to rely on the use of heaters and coolers to achieve thermally comfortable conditions. Concerns over the cost of heating and cooling were shared among the majority of respondents and particularly among people with low incomes. Findings from this study highlight the importance of providing information to older people, carers, designers and policy makers about the interrelationships between weather, housing design, heating and cooling behaviours, thermal comfort, energy use and health and well-being, in order to support older people to age in place independently and healthily.Veronica Soebarto, Helen Bennetts, Alana Hansen, Jian Zuo, Terence Williamson, Dino Pisaniello, Joost van Hoof, Renuka Visvanatha

    Smart homes and their users:a systematic analysis and key challenges

    Get PDF
    Published research on smart homes and their users is growing exponentially, yet a clear understanding of who these users are and how they might use smart home technologies is missing from a field being overwhelmingly pushed by technology developers. Through a systematic analysis of peer-reviewed literature on smart homes and their users, this paper takes stock of the dominant research themes and the linkages and disconnects between them. Key findings within each of nine themes are analysed, grouped into three: (1) views of the smart home-functional, instrumental, socio-technical; (2) users and the use of the smart home-prospective users, interactions and decisions, using technologies in the home; and (3) challenges for realising the smart home-hardware and software, design, domestication. These themes are integrated into an organising framework for future research that identifies the presence or absence of cross-cutting relationships between different understandings of smart homes and their users. The usefulness of the organising framework is illustrated in relation to two major concerns-privacy and control-that have been narrowly interpreted to date, precluding deeper insights and potential solutions. Future research on smart homes and their users can benefit by exploring and developing cross-cutting relationships between the research themes identified

    The Thermal Environment of Housing and Its Implications for the Health of Older People in South Australia: A Mixed-Methods Study

    Get PDF
    Published: 8 January 2022Older people are often over-represented in morbidity and mortality statistics associated with hot and cold weather, despite remaining mostly indoors. The study “Improving thermal environment of housing for older Australians” focused on assessing the relationships between the indoor environment, building characteristics, thermal comfort and perceived health/wellbeing of older South Australians over a study period that included the warmest summer on record. Our findings showed that indoor temperatures in some of the houses reached above 35 °C. With concerns about energy costs, occupants often use adaptive behaviours to achieve thermal comfort instead of using cooling (or heating), although feeling less satisfied with the thermal environment and perceiving health/wellbeing to worsen at above 28 °C (and below 15 °C). Symptoms experienced during hot weather included tiredness, shortness of breath, sleeplessness and dizziness, with coughs and colds, painful joints, shortness of breath and influenza experienced during cold weather. To express the influence of temperature and humidity on perceived health/wellbeing, a Temperature Humidity Health Index (THHI) was developed for this cohort. A health/wellbeing perception of “very good” is achieved between an 18.4 °C and 24.3 °C indoor operative temperature and a 55% relative humidity. The evidence from this research is used to inform guidelines about maintaining home environments to be conducive to the health/wellbeing of older people.Alana Hansen, TerenceWilliamson, Dino Pisaniello, Helen Bennetts, Joost van Hoof, Larissa Arakawa Martins, Renuka Visvanathan, Jian Zuo and Veronica Soebart

    Identification of CD8+ T Cell Epitopes in the West Nile Virus Polyprotein by Reverse-Immunology Using NetCTL

    Get PDF
    West Nile virus (WNV) is a growing threat to public health and a greater understanding of the immune response raised against WNV is important for the development of prophylactic and therapeutic strategies.In a reverse-immunology approach, we used bioinformatics methods to predict WNV-specific CD8(+) T cell epitopes and selected a set of peptides that constitutes maximum coverage of 20 fully-sequenced WNV strains. We then tested these putative epitopes for cellular reactivity in a cohort of WNV-infected patients. We identified 26 new CD8(+) T cell epitopes, which we propose are restricted by 11 different HLA class I alleles. Aiming for optimal coverage of human populations, we suggest that 11 of these new WNV epitopes would be sufficient to cover from 48% to 93% of ethnic populations in various areas of the World.The 26 identified CD8(+) T cell epitopes contribute to our knowledge of the immune response against WNV infection and greatly extend the list of known WNV CD8(+) T cell epitopes. A polytope incorporating these and other epitopes could possibly serve as the basis for a WNV vaccine

    Spin dependent scattering of a domain-wall of controlled size

    Full text link
    Magnetoresistance measurements in the CPP geometry have been performed on single electrodeposited Co nanowires exchange biased on one side by a sputtered amorphous GdCo layer. This geometry allows the stabilization of a single domain wall in the Co wire, the thickness of which can be controlled by an external magnetic field. Comparing magnetization, resistivity, and magnetoresistance studies of single Co nanowires, of GdCo layers, and of the coupled system, gives evidence for an additional contribution to the magnetoresistance when the domain wall is compressed by a magnetic field. This contribution is interpreted as the spin dependent scattering within the domain wall when the wall thickness becomes smaller than the spin diffusion length.Comment: 9 pages, 13 figure

    Allergen-specific IgG+ memory B cells are temporally linked to IgE memory responses

    Get PDF
    BACKGROUND: Immunoglobulin E (IgE) are least abundant, tightly regulated and IgE producing B cells are rare. The cellular origin and evolution of IgE responses are poorly understood. OBJECTIVE: To investigate the cellular and clonal origin of IgE memory responses following mucosal allergen exposure by sublingual immunotherapy (SLIT). METHODS: In a randomized double-blind, placebo-controlled, time-course SLIT study, peripheral blood mononuclear cells (PBMCs) and nasal biopsies were collected from forty adults with seasonal allergic rhinitis at baseline, 4, 8, 16, 28 and 52 weeks. RNA was extracted from PBMCs, sorted B cells and nasal biopsies for VH repertoire sequencing. Moreover, monoclonal antibodies were derived from single B cell transcriptomes. RESULTS: Combining VH repertoire sequencing and single cell transcriptomics yielded direct evidence of a parallel boost of two clonally and functionally related B cell subsets of short-lived IgE+ plasmablasts and IgG+ memory B cells (termed IgGE). Mucosal grass pollen allergen exposure by SLIT resulted in highly diverse IgE and IgGE repertoires. These were extensively mutated and appeared relative stable as per heavy chain isotype, somatic hypermutations and clonal composition. Single IgGE + memory B cell and IgE+ pre-plasmablast transcriptomes encoded antibodies that were specific for major grass pollen allergens and were able to elicit basophil activation at very low allergen concentrations. CONCLUSION: For the first time, we have shown that upon mucosal allergen exposure, human IgE memory resides in allergen-specific IgG+ memory B cells. These rapidly switch isotype and expand into short-lived IgE+ plasmablasts and serve as a potential target for therapeutic intervention

    A 3D Photoionization Model of the Extreme Planetary Nebula NGC 6302

    Get PDF
    We present a 3D photoionization model of the PN NGC 6302, one of the most complex objects of its kind. Our Mocassin model is composed of an extremely dense circumstellar disk and a large pair of diffuse bipolar lobes, a combination necessary to reproduce the observed spectrum. The masses of these components gives a total nebular mass of 4.7Mo. Discrepancies between our model fit and the observations are attributed to complex density inhomogeneities in the nebula. The potential to resolve such discrepancies with more complex models is confirmed by a range of models introducing small-scale structures. Compared to solar abundances He is enhanced by 50%, C is slightly subsolar, O is solar, and N is enhanced by a factor of 6. These imply a significant 3rd dredge-up coupled with hot-bottom burning CN-cycle conversion of dredged-up C to N. The central star is partly obscured by the edge-on circumstellar disk and its properties are not well constrained. Emission from a number of high-ionization `coronal' lines provides constraints on the form of the high-energy ionizing flux. Using a solar abundance stellar atmosphere we are unable to fit all of the observed line fluxes, but a substantially better fit was obtained using a 220,000K H-deficient stellar atmosphere with L*=14,300 Lo. The H-deficient nature of the central star suggests it has undergone a late thermal pulse, and fits to evolutionary tracks imply a central star mass of 0.73-0.82Mo. Timescales for these tracks suggest the object left the top of the AGB ~2100 years ago, in agreement with studies of the recent mass-loss event that formed the bipolar lobes. Based on the modelled nebular and central star masses we estimate the initial mass of the central star to be 5.5Mo, in agreement with that derived from evolutionary tracks. (Abstract truncated)Comment: 23 pages, 8 figures, 10 tables. Accepted for publication in MNRA
    • …
    corecore