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Key Messages
e Life-long persistence of allergy is underscored by the existence of allergen-
specific [gG+ memory B cells that are prone to isotype switching and secretion

of IgE.
e The fixed composition of the IgE repertoire during the first year of SLIT
treatment provides evidence to why long-term immunotherapy is not associated

with any signs of disease progression.

Capsule Summary

Evidence from clinical trials with sublingual immunotherapy supports that

immunological IgE memory responses originate from allergen-specific IgG+ B cells.

Key words
Immunoglobulin E, Sublingual Immunotherapy, grass pollen allergy, B cells,

plasmablasts, memory B cells.

Abbreviations

GC, germinal center; IgE, Immunoglobulin E; IgG, Immunoglobulin G; IgGg, IgG+
memory B cells; mab, monoclonal antibody; SHM, Somatic hypermutations; SLIT,

Sublingual Allergen Immunotherapy; VH, heavy chain variable gene.
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ABSTRACT

Background: Immunoglobulin E (IgE) are least abundant, tightly regulated and IgE
producing B cells are rare. The cellular origin and evolution of IgE responses are poorly
understood.

Objective: To investigate the cellular and clonal origin of IgE memory responses
following mucosal allergen exposure by sublingual immunotherapy (SLIT).

Methods: In a randomized double-blind, placebo-controlled, time-course SLIT study,
peripheral blood mononuclear cells (PBMCs) and nasal biopsies were collected from
forty adults with seasonal allergic rhinitis at baseline, 4, 8, 16, 28 and 52 weeks. RNA
was extracted from PBMCs, sorted B cells and nasal biopsies for VH repertoire
sequencing. Moreover, monoclonal antibodies were derived from single B cell
transcriptomes.

Results: Combining VH repertoire sequencing and single cell transcriptomics yielded
direct evidence of a parallel boost of two clonally and functionally related B cell subsets
of short-lived IgE+ plasmablasts and IgG+ memory B cells (termed IgGg). Mucosal
grass pollen allergen exposure by SLIT resulted in highly diverse IgE and IgGg
repertoires. These were extensively mutated and appeared relative stable as per heavy
chain isotype, somatic hypermutations and clonal composition. Single I[gGg + memory
B cell and IgE+ pre-plasmablast transcriptomes encoded antibodies that were specific
for major grass pollen allergens and were able to elicit basophil activation at very low
allergen concentrations.

Conclusion: For the first time, we have shown that upon mucosal allergen exposure,
human IgE memory resides in allergen-specific IgG+ memory B cells. These rapidly
switch isotype and expand into short-lived IgE+ plasmablasts and serve as a potential

target for therapeutic intervention.
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INTRODUCTION

Allergic diseases are typically life-long and even in the absence of allergen
exposure this phenomenon to occur requires some form of immunological memory.
Current concepts on the cellular origin of IgE memory are primarily based on murine
studies using various strains of transgenic mice.' It has been reported that [gG+ memory
B cells are able to induce antigen-specific IgE memory responses when transferred into
naive hosts.>® Although these studies do not exclude the possibility of long-lived IgE+
memory B cells, they confirm the importance of indirect isotype switching which leads
to allergen-specific IgE responses. In contrast, one study reported a transfer of IgE
memory responses by a subset of IgE+ B cells,* although it was later rectified to contain
a mixed population of IgG+ and IgE+ B cells.’ In general, studies have confirmed that
IgE+ B cells have an impaired ability to enter germinal centers (GCs) leading to short-
lived plasmablasts and absence of affinity maturation.%’ Similarly, IgE+ B cells are
predisposed to differentiate into short-lived plasmablasts.>® A more recent finding,
using a murine model of peanut allergy, showed that allergen-specific IgG response
precedes IgE response,’ and expansion of allergen-specific IgG1+ memory B cells was
accompanied by bone marrow reconstitution with IgE+ plasmablasts in mice re-
challenged with allergen nine months after sensitization.> Taken together, mouse
studies have provided convincing evidence for the role of IgG+ memory B cells in
maintaining IgE memory responses. However, these findings have not yet been
confirmed in allergic individuals. A recent study utilizing a validated and highly
sensitive PCR-based methodology failed to identify IgE+ memory B cells in allergic
patients,” and VH repertoire sequencing data are consistent with indirect switching to

IgE from primarily IgG expressing B cells in humans.'°
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Moreover, observations from several clinical trials of grass pollen SLIT have shown an
increase in IgE antibodies in serum that peaks in the first weeks of treatment followed
by a gradual decline over time.''"!* We therefore hypothesized that the transient
increase in serum IgE during SLIT coincides with a clonal boost of migratory allergen-
specific B cells in blood as previously demonstrated in a study of tetanus-toxoid
vaccinations.'* Here, we investigate the cellular and clonal origin of IgE memory
responses using next generation sequencing (NGS) of total antibody heavy chain
variable gene (VH) repertoires in combination with cell sorting techniques and single

B cell transcriptomics.
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METHODS

Clinical trial samples

The study (NCT02005627) was conducted at a single academic center, Imperial
College London, and included recruitment of 40 adult patients with moderate to severe
seasonal allergic rhinitis (see Repository Fig E1 for trial design and Table E1 for subject
characteristics). The trial was a randomized double-blind, placebo-controlled, time
course sublingual immunotherapy study (GRAZAX®, ALK-Abello Horsholm,
Denmark). The trial protocol'®> and amendments were approved by the relevant ethics
committees and institutional review boards. Written informed consent was obtained

from all participants.

RNA extraction from PBMC, sorted cells and nasal biopsies

For the sampling time points Baseline, 4 weeks, 8 weeks, 16 weeks, 7 months and 12
months after SLIT treatment initiation, total RNA was purified from 20 million PBMCs
and nasal biopsies using the RNeasy Mini kit (Qiagen) following the recommendations
of the supplier. From sorted B cells, RNA was isolated using the RNeasy Mini kit if the

sample contained more than 500,000 cells, otherwise the RNeasy Micro kit was used.

Immunoglobulin heavy chain sequencing and annotation

Amplification of the heavy chain V(D)J region, library preparation and high-throughput
sequencing was performed by iRepertoire Inc (USA). The resulting sequences were
trimmed and filtered for sequence quality, and paired-end reads were joined using
PEAR v0.9.7.'° Identical sequences were collapsed using fastx_collapser, a part of the
FASTX  Toolkit v0.0.14  (http://hannonlab.cshl.edu/fastx_toolkit/index.html).

Singleton sequences were discarded from further analysis. Isotype was assigned based
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on the first 17 nucleotides of the constant region, and annotation of V family, J family,
CDR1, CDR2, and CDR3 was performed wusing migmap v0.9.8
(https://github.com/mikessh/migmap).!” PCR cross-over events were removed by
discarding sequences that contributed with <5% to a given CDR3-defined clonotype.
VH sequences were clustered into clonal families using the DefineClones tool of the
Change-O package v0.3.9.'® Sequences were assigned to the same clonal family if they
had the same V and J family annotation, if the CDR3 region had the same length and if
the sequence identity between the CDR3 regions was >90% on nucleotide level. An
IgE clonotype was defined as a clonal family that contains more than 50 IgE transcripts
at a given time point. A more sensitive transcription cut-off was chosen to define IgGg
clonotypes: A clonal family was required to contain at least 10 IgE and at least 10 IgG

transcripts at any time point.

B cell FACS sorting

For B cell FACS sorting, PBMCs were stained with CD3 FITC, CD19 PE, IgD
PerCP/Cy5.5, CD38 PE-Cy7, CD138 APC and CD27 Pacific Blue. Live/Dead Fixable
Aqua Dead Cell Stain Kit (ThermoFisher, Waltham, MA, USA) was used to ensure
sorting of viable cells. Naive B cells (CD19+, CD27-, IgD+), Memory B cells (Double
memory cells, CD19+CD27-IgD-; Classical memory, CD19+CD27+IgD-; and IgM
memory; CD19+,CD27+,IgD+) and plasmablasts (CD19+/low, CD27+, CD38+,
CD138-) populations were sorted into separate tubes. To prepare for single cell
transcriptomics, single memory B cells from patient D04 were gated as (Igé+, CD19+,
CD4-, CDS8-) and sorted directly into 96-well PCR microtiter plates. Staining for
surface IgE appeared unspecific, likely reflecting surface-bound IgE complexes on non-

IgE memory B cells expressing the low affinity CD23 (FceRII) receptor.
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Single cell transcriptomics

The assay used to capture whole mRNA transcripts is adapted from the Smart-seq?2
protocol.!>? Briefly, mRNA was captured using poly-dT oligos and directly reverse-
transcribed into full-length ¢cDNA using the described template-switching LNA
oligo.'”?! Whole transcriptome cDNA was amplified by PCR. Quality and quantity of
cDNA amplification were assessed by capillary electrophoresis using Fragment
Analyzer (Advance Analytical) and fluorescent dsDNA intercalating-dye based assay
(Picogreen, Invitrogen). Before sequencing, all libraries were purified using AMPure
XP beads (0.9:1). Samples were sequenced on the Illumina sequencing platform,
HiSeq2500 (Illumina). Libraries generating a total of 172 million uniquely mapped
reads (median of ~1.8 million total uniquely filtered mapped reads per cell).
Single-cell RNA-seq data were mapped against the human hg19 reference genome and
UCSC gene models using TopHat (v1.4.1., -library-type fr-unstranded). The single-cell
RNA-seq data was integrated with the single cell data from Croote et al.?* using the R

library Seurat.?

Antibody expression and characterization

Recombinant IgE antibodies were transiently expressed in HEK293 suspension cultures
(Freestyle 293, Thermo Fisher Scientific, Waltham, MA, USA). Expression plasmids
were custom made at Genscript (Piscataway, NJ, USA). Recombinant IgE antibodies
were screened for specificity by SPR (Biacore 3000, GE-Healthcare). Basophil

activation assays were done as previously described.?*

Statistical Analysis
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P-values were calculated by a two-sample Wilcoxon test using the "R" open source

software.

10
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RESULTS

Sublingual allergen immunotherapy activates two subsets of IgE+ and IgG+ B
cells of common clonal origin

To evaluate the IgE repertoire development, antibody responses were investigated
using NGS of VH repertoires amplified by PCR in 21 subjects at baseline and after 4
weeks of grass SLIT-tablet (for information about sequencing depth see Repository
Table E2). A cluster and isotype assignment analysis identified 998 IgE clonotypes
derived from the 4 weeks samples during SLIT. Twenty-two percent of these IgE
clonotypes clustered together with a minor population of IgG transcripts indicating
common clonal origin as shown in Fig 1, 4. This defines a specific subset of the IgG
repertoire we here call IgGg and is likely to share antigen-specificity with the IgE
repertoire.

The level of IgE transcripts per sample at baseline was low and increased after 4 weeks
of SLIT in accordance with a boost of migrating IgE+ B cells (Fig 1, B). IgGg transcripts
also increased in response to SLIT although to a lower level than IgE (Fig 1, B).
Similarly, transcripts of individual IgE clonotypes (Fig 1, C), identified in both baseline
and week 4 samples, increased in response to SLIT, and the same transcriptional
increase was observed for individual IgGg clonotypes (Fig 1, C). Most of the IgE
clonotypes shared between baseline and 4 weeks samples were already switched to IgE
at baseline (Fig 1, 4 and Repository Fig E2) indicating a pre-commitment to the IgE
linage prior to allergen exposure. The level of somatic hypermutations (SHM) in IgE
repertoires was similar to that of IgG, IgGg, and IgA (Fig E3, A) in agreement with
sequential isotype switching from IgM to IgG and then IgE. Furthermore, the average

level of SHM in the IgE and IgGe repertoires did not increase, even within individual

11
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IgE clonotypes (Fig E3, B), despite the daily high-dose administration of grass pollen
tablet for 4 weeks. This indicates that switching from IgG to IgE happens without

further affinity maturation.

Stable composition of IgE repertoires during sublingual allergen immunotherapy
The effect of grass SLIT-tablet on IgE repertoire development during one year of
treatment was investigated by analyzing longitudinal samples from three patients
selected for high levels of IgE transcripts at week 4 (D04, D07, D16). VH transcripts
for individual clonotypes tended to decline after 4 weeks of treatment indicating a
reduced number of peripheral IgE+ B cells (Fig 2, 4). Nonetheless, IgE repertoires
remained diverse for over six months, and each time point had a substantial fraction of
private as well as shared IgE clonotypes (Fig 2, B). The IgE isotype was conserved for
most clonotypes throughout the six months of treatment. The IgE repertoire isolated at
week 4 (i.e. at the peak of the serological IgE response) yielded the highest number of
clonotypes which consistently constituted 51-52% of the repertoires at later time points
(Fig 2, B, top row). This consistent re-sampling rate indicates a relatively fixed grass-
tablet induced IgE repertoire. Sampling at later time points led to a progressively less
efficient sampling of the IgE repertoire likely explained by a lower number of IgE
producing B cells in the blood samples (i.e. contraction of the IgE repertoire) as evident
by the gradual drop in IgE transcripts over time.

The parallel trajectories of the total levels of IgE and IgGg VH transcripts further
support simultaneous activation and co-evolution of two clonally related populations of
IgE+ and IgGg+ B cells (Fig 2, C). For both repertoires, SHM levels remained constant
during treatment indicating no further affinity maturation (Fig 2, D). Thus, despite the

daily exposure to allergen in the course of one year of SLIT, the cellular IgE memory

12
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response, composed of proliferating IgE+ and IgGe+ B cells, appeared relatively stable

with no signs of isotype switching, clonal skewing or further mutagenesis.

Nasal and blood IgE repertoires are clonally related

To understand the relationship between antibody repertoires in blood and the nasal
mucosa, VH repertoire sequencing was performed on nasal biopsies from 7 donors
collected at baseline and after one year of treatment. Relative to blood, nasal biopsies
contained a larger fraction of IgA transcripts compared to matching samples collected
from blood (Fig 3, 4).

IgE transcripts were present in all nasal biopsies except one, but at lower levels and
comparable to blood baseline samples (Fig 3, B). In accordance, IgE repertoire
diversity, i.e. the number of clonotypes per sample (Fig 3, ), and the transcript level
of individual IgE clonotypes (Fig 3, D) were low and comparable to blood baseline
values. There was a clear clonal relationship between blood and nasal IgE repertoires
(Fig 3, E) which increased at week 4 during SLIT. Similar to the blood repertoire, nasal
repertoires contained a significant and consistent fraction of IgGg (Fig 3, £ and
Repository Fig E4). Thus, the IgE and IgGe memory responses in blood, induced by
oral allergen provocation, appeared closely associated to the quiescent nasal IgE

repertoire.

The IgE memory response contains a transcriptionally heterogeneous population
of memory B cells

To understand the cellular origin of the IgE repertoire in the periphery, VH repertoires
were analyzed from sorted subsets of naive B cells (CD20+, IgD+, CD38-), memory B

cells (CD20+, IgD-, CD38-) and plasmablasts (CD20"¥, IgD-, CD38+) collected at

13
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week 4 (Fig 4, 4-B). Naive B cells were evenly distributed in a multitude of small
clusters of IgM or IgD isotypes whereas plasmablasts were of relatively large sized
clusters with all isotypes represented (except IgD) in accordance with a repertoire
shaped by clonal expansion. Memory B cells contained a multitude of small clusters of

all isotypes but were dominated by a few large IgE clonotypes (Fig 4, B).

Transcriptomic profiling of single grass-specific IgG+ memory B cells and IgE+
pre-plasmablasts.

To address the observed transcriptional heterogeneity in the memory B cell
compartment, we performed indexed single cell FACS sorting followed by single-cell
transcriptomic profiling of single memory B cells of subject D04 week 4 sample
(experimental flow outlined in Fig 5, 4).

Transcriptomic data were integrated with a reference dataset of 973 single cells
prepared from CD19+ B cells?? and clustered by tSNE analysis of normalized gene
expression counts (Fig 5, B). Most of the sorted memory B cells (85/93) had the
expected naive/memory phenotype. However, 8 cells clustered as plasmablasts
indicating phenotypic heterogeneity within the population of sorted memory B cells.
The expression of signature genes of the memory/naive (MS441 and IRFS8) and
plasmablast (PRDM1 and IRF4) populations was consistent with previous reports®
(Repository Fig ES). In accordance with the negative selection for CD38 expression in
the FACS sorting protocol, the 8 cells with a plasmablast phenotype differed from the
reference population in CD38 expression (Fig 5, C). Two transcriptomes contained
productive IgE transcripts, and they both clustered with the plasmablast-like subset of
cells. Thus, it appears that the CD38- CD27+ pre-plasmablast population is enriched in

IgE+ cells explaining the large number of IgE transcripts in sorted memory B cells.

14
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For 64 single cell transcriptomes, it was possible to retrieve the full sequence of
cognate pairs of antibody heavy and light chain variable region genes. These cognate
pairs were aligned to the total antibody VH repertoires (Fig 5, D) which allowed for
selection of 11 antibody sequences based on clonal relationship to IgE and/or IgG
clonotypes. An additional 5 antibodies were selected based on the presence of sterile
germline transcripts of the IGHE locus (GLTe)?? indicative of active involvement in
TH2 inflammatory response.? Fourteen of the 16 antibodies bound to grass extract and
were mostly specific for major allergens (Table 1).

Antibodies were of high affinity and able to trigger basophil activation at very low
concentration when combined (Fig 5, E). Eleven transcriptomes of the memory/naive
phenotype encoded allergen-specific antibodies of the IgG1, [gG2 and IgG4 isotypes
which in 7 cases were co-expressed as IgE according to VH repertoire sequencing
thereby demonstrating a direct link between ongoing IgE memory response and
allergen-specific IgG memory B cells. Interestingly, most of the selected B cell
transcriptomes contained CD23 transcripts (15/16) and 10/12 of the GLTe+
transcriptomes encoded allergen-specific antibodies. Further, the co-existence of
clonally related IgGeg+ memory B cells and IgE+ plasmablasts agrees with the
difference in transcriptional levels (IgE>>IgGg; Fig 1, B) and the slower kinetics in

synthesis of allergen specific IgG relative to IgE in the early phases of SLIT (Repository

Fig E6).

15
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DISCUSSION

We demonstrate for the first time that the serological increase in allergen-specific IgE
following mucosal allergen exposure was accompanied by a cellular boost of IgE
producing plasmablasts in blood. We observed high levels of IgE transcripts in sorted
populations of plasmablasts (CD19+, CD20low, CD27+ CD38+) and identified single
allergen-specific B cells with a CD38 negative pre-plasmablast phenotype in sorted
memory B cells (CD19+, CD20+, CD27+ CD38-). Stimulation of human B cells ex
vivo shows the emergence of plasmablast-like IgE+ B cells (Blimp-1+, IgE"2h, CD38)
from PBMCs of allergic patients after 5-7 days of co-culture with allergen®® and IgE+
B cells (CFSE°YCD19™¢, CD27"e") from tonsils after co-stimulation with IL-4 and
anti-CD40 antibody.® Both of these phenotypes were compatible with IgE+ pre-
plasmablast and plasmablast phenotypes. The simultaneous drop in serum titers and
IgE transcripts suggests that the human IgE+ plasmablasts are short-lived. Together
with the absence of accumulation of SHMs, this parallels observations in mice, where
IgE+ plasma cells were short-lived and showed reduced affinity maturation,
presumably due to a transient and incomplete GC phase.®

27 could explain why allergic

Such extra-follicular formation of IgE memory responses
diseases progress slowly, in particular in adulthood, due to a slowly evolving IgE
repertoire. Longitudinal studies with samples taken years apart have demonstrated that
IgE repertoires in allergic subjects are oligoclonal and persist over time.?® Similarly, it
has been demonstrated that IgE repertoires sampled in two birch pollen seasons are
overlapping.?’ We also observed such persistence of the IgE repertoire demonstrated
by the limited clonal evolution, by the overlap between SLIT induced blood IgE

repertoires and nasal repertoires taken 11 months apart, and by the absence of further

isotype switching of the IgE repertoire. Considering the daily exposure to high doses

16
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of allergen for one year, this implies that allergen-exposure, as such, is not the main

cause for diversification of the IgE repertoire.

We isolated single IgG+ memory B cells at the peak of the IgE memory response that
encoded antibodies specific for the major grass allergens and belonged to clonotypes
simultaneously expressing IgE. Considering the high fraction of allergen-specific
antibodies, at least 14 out of 67 cognate VH/VL pairs, in this population of memory B
cells selected solely on phenotypic markers, the observed co-expression of CD23 and
GLTe appears as a potential marker for memory B cells involved in IgE responses. Both
markers are known to be under STAT-6 control and induced by IL-4.3%3! It remains to
be determined if these “TH2-polarized” memory B cells are present in a "quiescent"
state or the result of the daily exposure to allergen during SLIT. Further, the high
frequency of allergen-specific B cells reported here contrasts all previous studies in
allergic patients, which typically report very low prevalence of allergen-specific B
cells.?>3273¢ The high level of IgE transcripts (15%) in the PBMC fraction of subject
D04 was in accordance with the observation that 10 of the top 100 clonotypes in the
plasmablast sorted fraction were IgE producing.

Are those IgGe+ memory B cells the source of the IgE+ plasmablast response, and
hence the provenance of IgE memory? Several observations support this notion: i)
Single cell transcriptomic analysis showed an equal representation of I[gGe+ memory
B cells and IgE+ plasmablasts and the absence of IgE+ memory B cells. ii) Most (9/11)
of the allergen-specific [gGg+ memory B cells contained GLTe transcripts pointing to
recent exposure to Tu2 cytokines, such as IL-4, and thereby active involvement in the
ongoing allergic inflammation. iii) The upregulation of IgGg+ memory B cells

coincided with the increase in specific IgE titers and was misaligned with the much

17
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later increase in allergen-specific serum IgG, and hence not associated with a
concurrent IgGge+ plasmablast response. iv) IgE transcript levels were consistently
higher than levels for IgGe supporting that it is preferentially isotype-switched IgE+ B
cells that leave the memory state and differentiate into plasmablasts. v) The similar and
constant levels of SHM in IgE and IgGg repertoires, even within clonotypes, indicate
isotype switching outside germinal centers and hence absence of affinity maturation.
Thus, allergen-specific IgG+ memory B cells, capable of rapid extra-follicular isotype
switching to IgE, are likely the progenitors of the IgE-secreting plasmablasts forming
the serological IgE memory response at the site of inflammation, as recently proposed
by Gould and colleagues.! Moreover, the observation of high ratios of allergen-specific
to total IgE and low levels of IgG in the nasal mucosa of rhinitis patients corroborates

these findings.?’

One important question remains: Do long lived IgE+ memory B cells exist? The low
levels of IgE transcripts at baseline in blood and nasal samples could represent a rare
population of long-lived IgE+ memory B cells giving rise to the subsequent IgE
plasmablast response whereas long-lived plasma-cells are not likely to be found in
blood.*® Considering the simultaneous presence of IgGg transcripts in these baseline
samples, such IgE transcripts could also be the result of homeostatic self-renewal of
IgGet+ memory B cells turning into IgE+ plasmablasts by microbial products or
bystander T cell help.* Further, such allergen-specific plasma cells in allergic subjects

have previously been identified,®?

and B cell cultures from allergic, but not from
healthy donors, expressed IgE by T cell bystander activation suggesting differences in

the state of activation of memory B cells in these donors.*’ In further support, mouse
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studies suggest that lifelong food allergy is the consequence of recurrent activation of
memory B cells leading to relatively short-lived plasma cells.’

IgE class switching can occur directly from IgM to IgE or from sequential
rearrangements via IgG1, 1gG2 or 1gG4.!1%* The intermittent IgG phase allows for
affinity maturation and was proposed as the mechanism involved in the production of
affinity-matured IgE antibodies in memory responses.”*> Prior studies using deep
sequencing of human IgE repertoires show that IgE VH genes are most closely related
to clonal lineages of IgG, particularly IgGl, and share extensive patterns of
hypermutation with this isotype.'®** In agreement, peanut allergen-specific antibodies
isolated from antigen-specific B cells were in most cases derived from class-switched
cells expressing IgG.>*> We found direct evidence of indirect switching by identifying
single IgGl+, IgG2+ and IgG4+ memory B cells expressing allergen-specific
antibodies which were simultaneously expressed as clonal variants in the IgE repertoire.
Since IgE clonal families often were of the same lineage as IgG, showed no clonal
relationship to IgM and contained SHM at levels comparable to IgG, we conclude that
direct switching from IgM to IgE has an insignificant role in allergen-specific IgE
memory responses. Our previous work showed indirect evidence, switching from all
IgG subclasses and less from IgM,* and we now prove the inferred antibody

production. Similar to others,!%3335

a limitation of the current study is that it cannot
formally exclude the existence of IgE+ memory B cells given the limited sampling
depth of single-cell transcriptomics. Second, the daily exposure of high allergen doses
might lead to different cellular dynamics than the daily low-level exposure during a
pollen season. Thus, IgE memory responses induced by sublingual application of SLIT

tablets might not fully represent a memory response to natural allergen exposure

considering that the end-result of SLIT is clinical tolerance.
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Our findings have several clinical implications. The relatively fixed composition of the
IgE repertoire during the first year of SLIT demonstrates why long-term
immunotherapy is not associated with any signs of disease progression, such as de novo
sensitizations. Moreover, we demonstrate that antigen exposure per se is not a driving
factor for IgE repertoire diversification. Finally, the existence of a distinct population
of allergen-specific [gG+ memory B cells, prone to isotype switching and IgE secretion,
can explain the life-long persistence of allergy and is an obvious new target for

therapeutic intervention.
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Figure captions

Figure 1. Early clonal development of the IgE memory response at baseline and
after 4 weeks during grass SLIT. (A) Transcript level and isotype distribution of the
100 most frequent IgGg clonotypes. Each vertical bar in the large panels indicates the
transcriptional level of individual clonotypes and is colored according to isotype
distribution. Data are sorted according to clonotype transcript levels at week 4.
Compressed panels below show the isotype distribution within each clonotype.
Horizontal placement indicates clonal relationship between time points. (B) Total levels
of IgE and IgGg transcripts of individual donors before and during treatment. (C)
Transcript levels of individual IgE clonotypes identified at both baseline and week 4
and for the whole set of identified IgGe clonotypes. (D) Number of IgE and IgGe

clonotypes identified per donor.

Figure 2. Longitudinal development of the IgE memory response during one year
of grass SLIT. (A) Transcript level and isotype distribution of all IgE clonotypes from
3 donors at multiple time points, as indicated. Clonotypes are sorted according to
transcript levels at week 4. Horizontal placement indicates clonal relationship between
time points. (B) Proportion of IgE clonotypes that are shared between a reference time
point (full dark purple pie) and all other time points during six months of SLIT. In each
row a different time point serves as reference and arrows indicate the direction of
comparison. Dark purple coloring denotes the proportion of shared IgE clonotypes and
pie size is log-proportional to the IgE repertoire size at the given time point. Clonotypes
from 3 donors were pooled. (C) Longitudinal analysis of the total transcript levels of
IgE and IgGg. Each line represents the response of a single subject. (D) The average

frequency of somatic hypermutations for IgE clonotypes that were identified at a
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minimum of 3 time points (upper panel) and, in the case of IgGg, of all clonotypes
belonging to the IgGg repertoires at each time point (lower panel). Each dot represents
the average nonsynonymous mutation rate among transcripts contained in any

particular clonotype.

Figure 3. The IgE repertoire of the nasal mucosa from 7 grass patients at baseline
and after 12 months of grass SLIT-tablet treatment. (A) Isotype distribution profiles
of pooled nasal antibody repertoires from the 7 donors. The corresponding data from
pooled blood PBMC repertoires of these seven donors at baseline is shown for
comparison (left column). (B) Transcript levels of total IgE of individual donors in
nasal biopsies and blood. (C) Number of IgE clonotypes per nasal sample in
comparison to matched blood baseline from the same donors. (D) Transcript levels of
individual IgE clonotypes in nasal biopsies and blood (at baseline) as indicated. (E)
Pooled analysis of the overlap of IgE repertoire from the seven selected donors. Overlap
in IgE clonotype usage (dark colors) of the nasal repertoires and the blood at baseline
(upper row) or at the blood IgE peak point of 4 weeks into SLIT (lower row). The total

number of identified IgE clonotypes at each time point is indicated in brackets.

Figure 4. Cellular phenotypes of IgE memory B cell responses. (A) FACS sorting
of PBMC:s of patient D04 collected at week 4. Cells were bulk sorted using phenotypic
markers for naive B cells, plasmablasts and memory B cells as indicated. (B) VH
repertoire sequencing of the FACS sorted populations. Waterfall plot of the
transcriptional levels and isotype distribution for individual clonotypes. Only the 100

most frequent clonotypes are shown for each sample of sorted cells.
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Figure 5. Single cell transcriptomic profiling of memory B cells sorted from donor
D04 at week 4 during SLIT. (A) Single cell sequencing and analysis workflow. (B) A
pooled tSNE analysis combining the 93 single cell transcriptomes of subject D04 (black
dots) with a reference data set of 973 B cell transcriptomes (grey dots) ).2> The two
transcriptomes with productive and IgE rearrangements are labeled in purple and
marked by red arrows, remaining grass-specific antibodies are labeled in orange. (C)
Transcription levels of the plasmablast marker CD38 in all transcriptomes belonging to
the plasma cell cluster in the tSNE analysis in comparison to the CD38 levels in plasma
cells of the reference data set. (D) Transcript levels and isotype distribution in VH
antibody repertoires, at different time points, of individual VH genes identified by both
bulk repertoire sequencing and single cell transcriptomics. (E) Allergen-induced
activation of basophils passively coated with 3 different mixtures of purified
monoclonal antibodies (mab) according to specificity. (Blue line: mix of 6 Phl p 5
specific mabs. Red line: mix of 6 Phl p 6 specific mabs. Green line: mix of all 11 mabs).

Overlapping grey lines show the activity of the individual 11 mabs.
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