84 research outputs found

    Slug is a direct Notch target required for initiation of cardiac cushion cellularization

    Get PDF
    Snail family proteins are key regulators of epithelial-mesenchymal transition, but their role in endothelial-to-mesenchymal transition (EMT) is less well studied. We show that Slug, a Snail family member, is expressed by a subset of endothelial cells as well as mesenchymal cells of the atrioventricular canal and outflow tract during cardiac cushion morphogenesis. Slug deficiency results in impaired cellularization of the cardiac cushion at embryonic day (E)–9.5 but is compensated by increased Snail expression at E10.5, which restores cardiac cushion EMT. We further demonstrate that Slug, but not Snail, is directly up-regulated by Notch in endothelial cells and that Slug expression is required for Notch-mediated repression of the vascular endothelial cadherin promoter and for promoting migration of transformed endothelial cells. In contrast, transforming growth factor β (TGF-β) induces Snail but not Slug. Interestingly, activation of Notch in the context of TGF-β stimulation results in synergistic up-regulation of Snail in endothelial cells. Collectively, our data suggest that combined expression of Slug and Snail is required for EMT in cardiac cushion morphogenesis

    Identification of transcripts with enriched expression in the developing and adult pancreas

    Get PDF
    The expression profile of different developmental stages of the murine pancreas and predictions of transcription factor interactions, provides a framework for pancreas regulatory networks and development

    Notch Initiates the Endothelial-to-Mesenchymal Transition in the Atrioventricular Canal through Autocrine Activation of Soluble Guanylyl Cyclase

    Get PDF
    SummaryThe heart is the most common site of congenital defects, and valvuloseptal defects are the most common of the cardiac anomalies seen in the newborn. The process of endothelial-to-mesenchymal transition (EndMT) in the cardiac cushions is a required step during early valve development, and Notch signaling is required for this process. Here we show that Notch activation induces the transcription of both subunits of the soluble guanylyl cyclase (sGC) heterodimer, GUCY1A3 and GUCY1B3, which form the nitric oxide receptor. In parallel, Notch also promotes nitric oxide (NO) production by inducing Activin A, thereby activating a PI3-kinase/Akt pathway to phosphorylate eNOS. We thus show that the activation of sGC by NO through a Notch-dependent autocrine loop is necessary to drive early EndMT in the developing atrioventricular canal (AVC)

    A systematic screen for genes expressed in definitive endoderm by Serial Analysis of Gene Expression (SAGE)

    Get PDF
    BACKGROUND: The embryonic definitive endoderm (DE) gives rise to organs of the gastrointestinal and respiratory tract including the liver, pancreas and epithelia of the lung and colon. Understanding how DE progenitor cells generate these tissues is critical to understanding the cause of visceral organ disorders and cancers, and will ultimately lead to novel therapies including tissue and organ regeneration. However, investigation into the molecular mechanisms of DE differentiation has been hindered by the lack of early DE-specific markers. RESULTS: We describe the identification of novel as well as known genes that are expressed in DE using Serial Analysis of Gene Expression (SAGE). We generated and analyzed three longSAGE libraries from early DE of murine embryos: early whole definitive endoderm (0–6 somite stage), foregut (8–12 somite stage), and hindgut (8–12 somite stage). A list of candidate genes enriched for expression in endoderm was compiled through comparisons within these three endoderm libraries and against 133 mouse longSAGE libraries generated by the Mouse Atlas of Gene Expression Project encompassing multiple embryonic tissues and stages. Using whole mount in situ hybridization, we confirmed that 22/32 (69%) genes showed previously uncharacterized expression in the DE. Importantly, two genes identified, Pyy and 5730521E12Rik, showed exclusive DE expression at early stages of endoderm patterning. CONCLUSION: The high efficiency of this endoderm screen indicates that our approach can be successfully used to analyze and validate the vast amount of data obtained by the Mouse Atlas of Gene Expression Project. Importantly, these novel early endoderm-expressing genes will be valuable for further investigation into the molecular mechanisms that regulate endoderm development

    Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing

    Get PDF
    Foxa2 (HNF3β) is a one of three, closely related transcription factors that are critical to the development and function of the mouse liver. We have used chromatin immunoprecipitation and massively parallel Illumina 1G sequencing (ChIP–Seq) to create a genome-wide profile of in vivo Foxa2-binding sites in the adult liver. More than 65% of the ∼11.5 k genomic sites associated with Foxa2 binding, mapped to extended gene regions of annotated genes, while more than 30% of intragenic sites were located within first introns. 20.5% of all sites were further than 50 kb from any annotated gene, suggesting an association with novel gene regions. QPCR analysis demonstrated a strong positive correlation between peak height and fold enrichment for Foxa2-binding sites. We measured the relationship between Foxa2 and liver gene expression by overlapping Foxa2-binding sites with a SAGE transcriptome profile, and found that 43.5% of genes expressed in the liver were also associated with Foxa2 binding. We also identified potential Foxa2-interacting transcription factors whose motifs were enriched near Foxa2-binding sites. Our comprehensive results for in vivo Foxa2-binding sites in the mouse liver will contribute to resolving transcriptional regulatory networks that are important for adult liver function

    The TGF-β/Smad Repressor TG-Interacting Factor 1 (TGIF1) Plays a Role in Radiation-Induced Intestinal Injury Independently of a Smad Signaling Pathway

    Get PDF
    Despite advances in radiation delivery protocols, exposure of normal tissues during the course of radiation therapy remains a limiting factor of cancer treatment. If the canonical TGF-β/Smad pathway has been extensively studied and implicated in the development of radiation damage in various organs, the precise modalities of its activation following radiation exposure remain elusive. In the present study, we hypothesized that TGF-β1 signaling and target genes expression may depend on radiation-induced modifications in Smad transcriptional co-repressors/inhibitors expressions (TGIF1, SnoN, Ski and Smad7). In endothelial cells (HUVECs) and in a model of experimental radiation enteropathy in mice, radiation exposure increases expression of TGF-β/Smad pathway and of its target gene PAI-1, together with the overexpression of Smad co-repressor TGIF1. In mice, TGIF1 deficiency is not associated with changes in the expression of radiation-induced TGF-β pathway-related transcripts following localized small intestinal irradiation. In HUVECs, TGIF1 overexpression or silencing has no influence either on the radiation-induced Smad activation or the Smad3-dependent PAI-1 overexpression. However, TGIF1 genetic deficiency sensitizes mice to radiation-induced intestinal damage after total body or localized small intestinal radiation exposure, demonstrating that TGIF1 plays a role in radiation-induced intestinal injury. In conclusion, the TGF-β/Smad co-repressor TGIF1 plays a role in radiation-induced normal tissue damage by a Smad-independent mechanism

    FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse

    No full text
    The node and the anterior visceral endoderm (AVE) are important organizing centers that pattern the mouse embryo by establishing the anterior–posterior (A–P), dorsal–ventral (D–V), and left–right (L–R) axes. Activin/nodal signaling through the Smad2 pathway has been implicated in AVE formation and in morphogenesis of the primitive streak, the anterior end of which gives rise to the node. The forkhead DNA-binding protein, FoxH1 (or Fast), functions as a Smad DNA-binding partner to regulate transcription in response to activin signaling. Here, we show that deletion of FoxH1 in mice results in failure to pattern the anterior primitive streak (APS) and form node, prechordal mesoderm, notochord, and definitive endoderm. In contrast, formation of the AVE can occur in the absence of FoxH1. The FoxH1 mutant phenotype is remarkably similar to that of mice deficient in the forkhead protein Foxa2 (HNF3β), and we show that Foxa2 expression is dependent on FoxH1 function. These results show that FoxH1 functions in an activin/nodal–Smad signaling pathway that acts upstream of Foxa2 and is required specifically for patterning the APS and node in the mouse

    Dominant-Negative Smad2 Mutants Inhibit Activin/Vg1 Signaling and Disrupt Axis Formation in Xenopus

    Get PDF
    AbstractSmads are central mediators of signal transduction for the TGFβ superfamily. However, the precise functions of Smad-mediated signaling pathways in early development are unclear. Here we demonstrate a requirement for Smad2 signaling in dorsoanterior axis formation during Xenopus development. Using two point mutations of Smad2 previously identified in colorectal carcinomas, we show that Smad2 ushers Smad4 to the nucleus to form a transcriptional activation complex with the nuclear DNA-binding protein FAST-1 and that the mutant proteins interact normally with FAST-1 but fail to recruit Smad4 into the nucleus. This mechanism of inhibition specifically restricts the dominant-negative activity of these mutants to the activin/Vg1 signaling pathway without inhibiting BMPs. Furthermore, expression of these mutants in Xenopus animal caps inhibits but does not abolish activin and Vg1 induction of mesoderm and in the embryo results in a truncated dorsoanterior axis. These studies define a mechanism through which mutations in Smad2 may block TGFβ-dependent signaling and suggest a critical role for inductive signaling mediated by the Smad2 pathway in Xenopus organizer function
    corecore