4,412 research outputs found
The Semileptonic Decay Fraction of B Mesons in the Light of Interfering Amplitudes
Consequences of the interference between spectator amplitudes for the
lifetimes and semileptonic decay fractions of B^0 and B^+ mesons are discussed.
Assuming duality and constructive interference between spectator amplitudes we
are able to explain the low experimental value for the semileptonic decay
fraction of mesons. Extracting these amplitudes from a fit to 11 exclusive
hadronic B decay fractions we find
a_1 = 1.05 +/- 0.03 +/- 0.10,
a_2 =+0.227 +/ 0.012 +/- 0.022,
an inclusive semileptonic decay fraction of
(11.2 +/- 0.5 +/- 1.7),
and a lifetime ratio
tau(B^+) / tau(B^0) = 0.83 +/- 0.01 +/- 0.01.Comment: 9 page
Penguin decays of B mesons
Penguin, or loop, decays of B mesons induce effective flavor-changing neutral
currents, which are forbidden at tree level in the Standard Model. These decays
give special insight into the CKM matrix and are sensitive to non-standard
model effects. In this review, we give a historical and theoretical
introduction to penguins and a description of the various types of penguin
processes: electromagnetic, electroweak, and gluonic. We review the
experimental searches for penguin decays, including the measurements of the
electromagnetic penguins b -> s gamma and B -> K* gamma and gluonic penguins B
-> K pi, B+ -> omega K+ and B -> eta' K, and their implications for the
Standard Model and New Physics. We conclude by exploring the future prospects
for penguin physics.Comment: 49 pages, LATEX, 30 embedded figures, submitted to Annual Reviews of
Nuclear and Particle Scienc
Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier
These reports present the results of the 2013 Community Summer Study of the
APS Division of Particles and Fields ("Snowmass 2013") on the future program of
particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the
program of research relevant to cosmology and the early universe. This area
includes the study of dark matter and the search for its particle nature, the
study of dark energy and inflation, and cosmic probes of fundamental
symmetries.Comment: 61 page
Exploiting Cross Correlations and Joint Analyses
In this report, we present a wide variety of ways in which information from
multiple probes of dark energy may be combined to obtain additional information
not accessible when they are considered separately. Fundamentally, because all
major probes are affected by the underlying distribution of matter in the
regions studied, there exist covariances between them that can provide
information on cosmology. Combining multiple probes allows for more accurate
(less contaminated by systematics) and more precise (since there is
cosmological information encoded in cross-correlation statistics) measurements
of dark energy. The potential of cross-correlation methods is only beginning to
be realized. By bringing in information from other wavelengths, the
capabilities of the existing probes of dark energy can be enhanced and
systematic effects can be mitigated further. We present a mixture of work in
progress and suggestions for future scientific efforts. Given the scope of
future dark energy experiments, the greatest gains may only be realized with
more coordination and cooperation between multiple project teams; we recommend
that this interchange should begin sooner, rather than later, to maximize
scientific gains.Comment: Report from the "Dark Energy and CMB" working group for the American
Physical Society's Division of Particles and Fields long-term planning
exercise ("Snowmass"
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples
We explore the cosmological implications of the angle-averaged correlation function, ξ(s), and the clustering wedges, ξ⊥(s) and ξ∥(s), of the LOWZ and CMASS galaxy samples from Data Releases 10 and 11 of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. Our results show no significant evidence for a deviation from the standard Λ cold dark matter model. The combination of the information from our clustering measurements with recent data from the cosmic microwave background is sufficient to constrain the curvature of the Universe to Ωk = 0.0010 ± 0.0029, the total neutrino mass to ∑mν < 0.23 eV (95 per cent confidence level), the effective number of relativistic species to Neff = 3.31 ± 0.27 and the dark energy equation of state to wDE = −1.051 ± 0.076. These limits are further improved by adding information from Type Ia supernovae and baryon acoustic oscillations from other samples. In particular, this data set combination is completely consistent with a time-independent dark energy equation of state, in which case we find wDE = −1.024 ± 0.052. We explore the constraints on the growth rate of cosmic structures assuming f(z) = Ωm(z)γ and obtain γ = 0.69 ± 0.15, consistent with the predictions of general relativity of γ = 0.55.Publisher PDFPeer reviewe
- …
