4,412 research outputs found

    The Semileptonic Decay Fraction of B Mesons in the Light of Interfering Amplitudes

    Full text link
    Consequences of the interference between spectator amplitudes for the lifetimes and semileptonic decay fractions of B^0 and B^+ mesons are discussed. Assuming duality and constructive interference between spectator amplitudes we are able to explain the low experimental value for the semileptonic decay fraction of BB mesons. Extracting these amplitudes from a fit to 11 exclusive hadronic B decay fractions we find a_1 = 1.05 +/- 0.03 +/- 0.10, a_2 =+0.227 +/ 0.012 +/- 0.022, an inclusive semileptonic decay fraction of (11.2 +/- 0.5 +/- 1.7), and a lifetime ratio tau(B^+) / tau(B^0) = 0.83 +/- 0.01 +/- 0.01.Comment: 9 page

    Penguin decays of B mesons

    Get PDF
    Penguin, or loop, decays of B mesons induce effective flavor-changing neutral currents, which are forbidden at tree level in the Standard Model. These decays give special insight into the CKM matrix and are sensitive to non-standard model effects. In this review, we give a historical and theoretical introduction to penguins and a description of the various types of penguin processes: electromagnetic, electroweak, and gluonic. We review the experimental searches for penguin decays, including the measurements of the electromagnetic penguins b -> s gamma and B -> K* gamma and gluonic penguins B -> K pi, B+ -> omega K+ and B -> eta' K, and their implications for the Standard Model and New Physics. We conclude by exploring the future prospects for penguin physics.Comment: 49 pages, LATEX, 30 embedded figures, submitted to Annual Reviews of Nuclear and Particle Scienc

    Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier

    Full text link
    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the program of research relevant to cosmology and the early universe. This area includes the study of dark matter and the search for its particle nature, the study of dark energy and inflation, and cosmic probes of fundamental symmetries.Comment: 61 page

    Exploiting Cross Correlations and Joint Analyses

    Full text link
    In this report, we present a wide variety of ways in which information from multiple probes of dark energy may be combined to obtain additional information not accessible when they are considered separately. Fundamentally, because all major probes are affected by the underlying distribution of matter in the regions studied, there exist covariances between them that can provide information on cosmology. Combining multiple probes allows for more accurate (less contaminated by systematics) and more precise (since there is cosmological information encoded in cross-correlation statistics) measurements of dark energy. The potential of cross-correlation methods is only beginning to be realized. By bringing in information from other wavelengths, the capabilities of the existing probes of dark energy can be enhanced and systematic effects can be mitigated further. We present a mixture of work in progress and suggestions for future scientific efforts. Given the scope of future dark energy experiments, the greatest gains may only be realized with more coordination and cooperation between multiple project teams; we recommend that this interchange should begin sooner, rather than later, to maximize scientific gains.Comment: Report from the "Dark Energy and CMB" working group for the American Physical Society's Division of Particles and Fields long-term planning exercise ("Snowmass"

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples

    Get PDF
    We explore the cosmological implications of the angle-averaged correlation function, ξ(s), and the clustering wedges, ξ⊥(s) and ξ∥(s), of the LOWZ and CMASS galaxy samples from Data Releases 10 and 11 of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. Our results show no significant evidence for a deviation from the standard Λ cold dark matter model. The combination of the information from our clustering measurements with recent data from the cosmic microwave background is sufficient to constrain the curvature of the Universe to Ωk = 0.0010 ± 0.0029, the total neutrino mass to ∑mν < 0.23 eV (95 per cent confidence level), the effective number of relativistic species to Neff = 3.31 ± 0.27 and the dark energy equation of state to wDE = −1.051 ± 0.076. These limits are further improved by adding information from Type Ia supernovae and baryon acoustic oscillations from other samples. In particular, this data set combination is completely consistent with a time-independent dark energy equation of state, in which case we find wDE = −1.024 ± 0.052. We explore the constraints on the growth rate of cosmic structures assuming f(z) = Ωm(z)γ and obtain γ = 0.69 ± 0.15, consistent with the predictions of general relativity of γ = 0.55.Publisher PDFPeer reviewe
    corecore