43 research outputs found

    Assessing Earthquake-Induced Tree Mortality in Temperate Forest Ecosystems: A Case Study from Wenchuan, China

    Get PDF
    Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg∙C was lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a significant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets

    HanoiT: Enhancing Context-aware Translation via Selective Context

    Full text link
    Context-aware neural machine translation aims to use the document-level context to improve translation quality. However, not all words in the context are helpful. The irrelevant or trivial words may bring some noise and distract the model from learning the relationship between the current sentence and the auxiliary context. To mitigate this problem, we propose a novel end-to-end encoder-decoder model with a layer-wise selection mechanism to sift and refine the long document context. To verify the effectiveness of our method, extensive experiments and extra quantitative analysis are conducted on four document-level machine translation benchmarks. The experimental results demonstrate that our model significantly outperforms previous models on all datasets via the soft selection mechanism

    Plant functional traits have globally consistent effects on competition.

    Get PDF
    Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits--wood density, specific leaf area and maximum height--consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.We are especially grateful to the researchers whose long-term commitment to establish and maintain forest plots and their associated databases made this study possible, and to those who granted us data access: forest inventories and permanent plots of New Zealand, Spain (MAGRAMA), France, Switzerland, Sweden, US and Canada (for the provinces of Quebec provided by the MinistĂšre des Ressources Naturelles du QuĂ©bec, Ontario provided by OnTAP’s Growth and Yield Program of the Ontario Ministry of Natural Resources, Saskatchewan, Manitoba, New Brunswick, Newfoundland and Labrador), CTFS (BCI and LTER-Luquillo), Taiwan (Fushan), Cirad (Paracou with funding by CEBA, ANR-10-LABX-25-01), Cirad, MEFCP and ICRA (M’BaĂŻki) and Japan. We thank MPI-BGC Jena, who host TRY, and the international funding networks supporting TRY (IGBP, DIVERSITAS, GLP, NERC, QUEST, FRB and GIS Climate). G.K. was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Program (Demo-Traits project, no. 299340). The working group that initiated this synthesis was supported by Macquarie University and by Australian Research Council through a fellowship to M.W.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1647

    Assessing Earthquake-Induced Tree Mortality in Temperate Forest Ecosystems: A Case Study from Wenchuan, China

    No full text
    Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg∙C was lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a significant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets

    An Improved Equivalent Squint Range Model and Imaging Approach for Sliding Spotlight SAR Based on Highly Elliptical Orbit

    No full text
    As an emerging orbital system with flexibility and brand application prospects, the highly elliptical orbit synthetic aperture radar (HEO SAR) can achieve both a low orbit detailed survey and continuous earth surface observation in high orbit, which could be applied to marine reconnaissance and surveillance. However, due to its large eccentricity, two challenges have been faced in the signal processing of HEO SAR at present. The first challenge is that the traditional equivalent squint range model (ESRM) fails to accurately describe the entire range for the whole orbit period including the perigee, the apogee, and the squint subduction section. The second one is to exploit an efficient HEO SAR imaging algorithm in the squinted case which solves the problem that traditional imaging algorithm fails to achieve the focused imaging processing of HEO SAR during the entire orbit period. In this paper, a novel imaging algorithm for HEO SAR is presented. Firstly, the signal model based on the geometric configuration of the large elliptical orbit is established and the Doppler parameter characteristics of SAR are analyzed. Secondly, due to the particularity of Doppler parameters variation in the whole period of HEO, the equivalent velocity and equivalent squint angle used in MESRM can no longer be applied, a refined fourth-order equivalent squint range model(R4-ESRM) that is suitable for HEO SAR is developed by introducing fourth-order Doppler parameter into Modified ESRM (MESRM), which accurately reconstructs the range history of HEO SAR. Finally, a novel imaging algorithm combining azimuth resampling and time-frequency domain hybrid correlation based on R4-ESRM is derived. Simulation is performed to demonstrate the feasibility and validity of the presented algorithm and range model, showing that it achieves the precise phase compensation and well focusing

    A Calibration Method for Contact Parameters of Maize Kernels Based on the Discrete Element Method

    No full text
    Clarifying the maize kernel movement during the crushing process is critical for improving the design and optimization of the impact mill. Rather than through experiments, maize kernel movement can be quantitatively analyzed through the discrete element method (DEM), and this could contribute more to the study of the crushing mechanism and equipment optimization. However, having an accurate particle model and contact parameters are prerequisites to ensure the accuracy of the DEM simulation. In this study, we proposed a maize kernel model construction method for the Rocky DEM simulation and a calibration method to calibrate contact parameters. The three-axis size, volume, and shape information of real maize kernels were obtained by 3D scanning, and then the maize kernel model was constructed by the section method. The particle–low-carbon-plate (p–w) and particle–particle (p–p) restitution coefficients were calibrated by using the improved inclined surface drop method. In addition, the angle of repose (AoR) and discharging time were considered together to calibrate the dynamical friction coefficients of p–w and p–p through the funnel method. Additionally, the maize kernel model and calibrated parameter values were used in a DEM simulation of the inclined surface drop test and the funnel test. The maximum relative errors between the simulation values and the measured values of the inclined surface drop test and the funnel test were 4.38% and 6.98%, respectively, which further verified that the proposed maize kernel model construction and contact parameter calibration methods are feasible and accurate. The research method used in this study is a novel idea that can be applied for the construction of the particle model and calibration of the contact parameters of granular materials with complex geometric structures, as well as the maize kernel model, and shows that calibrated contact parameters can provide a reference for the maize kernel crushing simulation to optimize the impact mill

    An Improved Equivalent Squint Range Model and Imaging Approach for Sliding Spotlight SAR Based on Highly Elliptical Orbit

    No full text
    As an emerging orbital system with flexibility and brand application prospects, the highly elliptical orbit synthetic aperture radar (HEO SAR) can achieve both a low orbit detailed survey and continuous earth surface observation in high orbit, which could be applied to marine reconnaissance and surveillance. However, due to its large eccentricity, two challenges have been faced in the signal processing of HEO SAR at present. The first challenge is that the traditional equivalent squint range model (ESRM) fails to accurately describe the entire range for the whole orbit period including the perigee, the apogee, and the squint subduction section. The second one is to exploit an efficient HEO SAR imaging algorithm in the squinted case which solves the problem that traditional imaging algorithm fails to achieve the focused imaging processing of HEO SAR during the entire orbit period. In this paper, a novel imaging algorithm for HEO SAR is presented. Firstly, the signal model based on the geometric configuration of the large elliptical orbit is established and the Doppler parameter characteristics of SAR are analyzed. Secondly, due to the particularity of Doppler parameters variation in the whole period of HEO, the equivalent velocity and equivalent squint angle used in MESRM can no longer be applied, a refined fourth-order equivalent squint range model(R4-ESRM) that is suitable for HEO SAR is developed by introducing fourth-order Doppler parameter into Modified ESRM (MESRM), which accurately reconstructs the range history of HEO SAR. Finally, a novel imaging algorithm combining azimuth resampling and time-frequency domain hybrid correlation based on R4-ESRM is derived. Simulation is performed to demonstrate the feasibility and validity of the presented algorithm and range model, showing that it achieves the precise phase compensation and well focusing
    corecore