1,944 research outputs found

    A Study on the Influencing Factors of Teaching Interaction on Deep Learning from the Perspective of Social Cognitive Theory

    Get PDF
    Based on Social Cognitive Theory SCT a research model is constructed with teaching interaction as the independent variable self-efficacy as the mediating variable and Deep learning as the dependent variable The research uses regression analysis and Bootstrap test to explore the impact of teaching interaction on college students Deep learning and the mediating role of self-efficacy The research results show that teaching interaction positively and significantly affects college students Deep learning and self- efficacy of which material-chemical interaction has the most significant effect on college students Deep learning 0 431 self-efficacy positively affects college students Deep learning 0 255 and play a partial mediating role in teaching interaction and Deep learning Finally the research proposes to build a multi-modal interaction mechanism to promote the realization of Deep learning to create an embodied collaborative learning context to improve the quality of teaching interaction Learn and referenc

    Study on Complex Products Job-shop Scheduling System Based on MES

    Get PDF
    Various random disturbances that happen in the process of complex products (ship) production cannot feedback timely, and the plans of job-shop operation are too rough to instruct job-shop production. The purpose of this study is to solve the problems above, help the course of complex products (ship) job-shop production runs orderly and efficiently, and improve the job-shop on-site management level. In this paper, we proposed complex products job-shop scheduling system based on MES. The system adopts six-level, refined plan and scheduling mechanism. Its key part is the job-shop scheduling model with man-machine coordinated mechanism. What’s more, an improved Genetic Algorithm based on TOC is proposed to make the optimized algorithm module of the system more scientific and effective. Key words: Complex Products; MES; Job-shop Scheduling System; Man-machine Coordinated Mechanism; Genetic Algorithm Résumé: Diverses perturbations qui se produisent au hasard dans le processus de production des produits complexes (navire) ne peuvent pas être apperçues en temps opportun, et les plans de l'opération des ateliers sont trop approximatifs pour guider la production. Le but de cette étude consiste à résoudre les problèmes ci-dessus, rendre le cours de la production des produits complexes (ship) dans les ateliers ordonné et efficace et améliorer le niveau de gestion sur place. Dans cet article, nous avons proposé le système de planning des ateliers de produits complexes basé sur MES. Le système contient six niveaux de programmation raffinée et de mécanismes de planning. Son élément essentiel est le modèle de programmation avec les mécanismes de coordination homme-machine. De plus, un algorithme génétique amélioré basé sur TOC est également proposé de rendre le module de l'algorithme du système optimisé plus scientifique et efficace. Mots-clés: produits complexes; MES; système de planning des ateliers; mécanismes de coordination homme-machine; algorithme génétique 摘要:針對目前複雜產品(船舶)生產過程中所出現的各種隨機擾動不能得到及時回饋,以及車間作業計畫粗略難以直接指導車間生產的現狀,本文提出基於 MES的複雜產品車間作業調度系統。該系統採用逐層細化的五級計畫與調度機制,以人機協同的車間作業調度模型為核心,通過改進基於 TOC的遺傳演算法,使系統的演算法模組優化性能更具有科學性和操作性。該系統有助於實現複雜產品(船舶)車間生產過程的有序運作,從而提高生產車間的現場管理水準。 關鍵字:複雜產品; MES;車間作業調度;人機協同;遺傳演算

    Substrate specificity provides insights into the sugar donor recognition mechanism of O-GlcNAc transferase (OGT).

    Get PDF
    O-Linked β-N-acetylglucosaminyl transferase (OGT) plays an important role in the glycosylation of proteins, which is involved in various cellular events. In human, three isoforms of OGT (short OGT [sOGT]; mitochondrial OGT [mOGT]; and nucleocytoplasmic OGT [ncOGT]) share the same catalytic domain, implying that they might adopt a similar catalytic mechanism, including sugar donor recognition. In this work, the sugar-nucleotide tolerance of sOGT was investigated. Among a series of uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) analogs tested using the casein kinase II (CKII) peptide as the sugar acceptor, four compounds could be used by sOGT, including UDP-6-deoxy-GlcNAc, UDP-GlcNPr, UDP-6-deoxy-GalNAc and UDP-4-deoxy-GlcNAc. Determined values of Km showed that the substitution of the N-acyl group, deoxy modification of C6/C4-OH or epimerization of C4-OH of the GlcNAc in UDP-GlcNAc decreased its affinity to sOGT. A molecular docking study combined with site-directed mutagenesis indicated that the backbone carbonyl oxygen of Leu653 and the hydroxyl group of Thr560 in sOGT contributed to the recognition of the sugar moiety via hydrogen bonds. The close vicinity between Met501 and the N-acyl group of GlcNPr, as well as the hydrophobic environment near Met501, were responsible for the selective binding of UDP-GlcNPr. These findings illustrate the interaction of OGT and sugar nucleotide donor, providing insights into the OGT catalytic mechanism

    Visualizing the elongated vortices in γ\gamma-Ga nanostrips

    Get PDF
    We study the magnetic response of superconducting γ\gamma-Ga via low temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips (width ll << 100 nm). This is in stark contrast with the isotropic circular vortex core in a larger round-shaped Ga island. We suggest that the unusual elongated vortices in Ga nanostrips originate from geometric confinement effect probably via the strong repulsive interaction between the vortices and Meissner screening currents at the sample edge. Our finding provides novel conceptual insights into the geometrical confinement effect on magnetic vortices and forms the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio

    Neurocalcin-delta: a potential memory-related factor in hippocampus of obese rats induced by high-fat diet.

    Get PDF
    Introduction: Aberrant protein expression within the hippocampus has recently been implicated in the pathogenesis of obesity- induced memory impairment.Objectives: The objective of the current study was to search for specific memory-related factors in the hippocampus in obese rats.Methods: Sprague-Dawley (SD) rats were fed either a high-fat (HF) diet or normal-fat (NF) diet for 10 weeks to obtain the control (CON), diet-induced obese rats (DIO) and diet-resistant (DR) rats. D-galactose was injected subcutaneously for 10 weeks to establish model (MOD) rats with learning and memory impairment. After the hippocampus of the rats sampling, the proteome analysis was conducted using two-dimensional get electrophoresis (2-DE) combined with peptide mass fingerprinting (PMF).Results: We found 15 differential proteins that expressed in the hippocampus in rats induced by HF diet from the 2-DE map. In addition, Neurocalcin-delta (NCALD) was nearly down-regulated in the DR rats compared with CON rats and MOD rats, which was further confirmed by Western blot, real-time PCR and ELISA results.Conclusion: Our data demonstrates that the differential memory-related proteins were a reflection of the HF diet, but not potential factors in obesity proneness or obesity resistance. Furthermore, NCALD is proved to be a potential hippocampus-memory related factor related to obesity.Keywords: Diet-induced obesity; diet-resistant; high fat diet; neurocalcin-delta; proteom

    Mapping codon usage of the translation initiation region in porcine reproductive and respiratory syndrome virus genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Porcine reproductive and respitatory syndrome virus (PRRSV) is a recently emerged pathogen and severely affects swine populations worldwide. The replication of PRRSV is tightly controlled by viral gene expression and the codon usage of translation initiation region within each gene could potentially regulate the translation rate. Therefore, a better understanding of the codon usage pattern of the initiation translation region would shed light on the regulation of PRRSV gene expression.</p> <p>Results</p> <p>In this study, the codon usage in the translation initiation region and in the whole coding sequence was compared in PRRSV ORF1a and ORFs2-7. To investigate the potential role of codon usage in affecting the translation initiation rate, we established a codon usage model for PRRSV translation initiation region. We observed that some non-preferential codons are preferentially used in the translation initiation region in particular ORFs. Although some positions vary with codons, they intend to use codons with negative CUB. Furthermore, our model of codon usage showed that the conserved pattern of CUB is not directly consensus with the conserved sequence, but shaped under the translation selection.</p> <p>Conclusions</p> <p>The non-variation pattern with negative CUB in the PRRSV translation initiation region scanned by ribosomes is considered the rate-limiting step in the translation process.</p

    Modification of 1D TiO2 nanowires with GaOxNy by atomic layer deposition for TiO2@GaOxNy core-shell nanowires with enhanced photoelectrochemical performance

    Get PDF
    As a well-known semiconductor that can catalyse the oxygen evolution reaction, TiO2 has been extensively investigated for its solar photoelectrochemical water properties. Unmodified TiO2 shows some issues, particularly with respect to its photoelectrochemical performance. In this paper, we present a strategy for the controlled deposition of controlled amounts of GaOxNy cocatalysts on TiO2 1D nanowires (TiO2@GaOxNy core-shell) using atomic layer deposition. We show that this modification significantly enhances the photoelectrochemical performance compared to pure TiO2 NW photoanodes. For our most active TiO2@GaOxNy core-shell nanowires with a GaOxNy thickness of 20 nm, a photocurrent density up to 1.10 mA cm-2 (at 1.23 V vs RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of unmodified TiO2 NWs. Furthermore, the band gap matching with TiO2 enhances absorption of visible light over unmodified TiO2 and the facile oxygen vacancy formation after deposition of GaOxNy also provides active sites for water activation. Density functional theory studies of model systems of GaOxNy-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaOxNy core-shell nanowires with ALD deposited GaOxNy demonstrates a good strategy for fabrication of core-shell structures that enhances the photoelectrochemical performance of readily available photoanodes

    R-parity violation effect on the top-quark pair production at linear colliders

    Full text link
    We investigate in detail the effects of the R-parity lepton number violation in the minimal supersymmetric standard model (MSSM) on the top-quark pair production via both ee+e^--e^+ and γγ\gamma-\gamma collision modes at the linear colliders. We find that with the present experimental constrained /R\rlap/{R} parameters, the effect from /R\rlap/{R} interactions on the processes e+ettˉe^+e^-\to t\bar{t} and e+eγγttˉe^+e^- \to \gamma\gamma \to t\bar{t} could be significant and may reach -30% and several percent, respectively. Our results show that the /R\rlap/{R} effects are sensitive to the c.m.s. energy and the relevant /R\rlap/{R} parameters. However, they are not sensitive to squark and slepton masses when mq~400GeVm_{\tilde{q}} \geq 400 GeV (or ml~300GeVm_{\tilde{l}} \geq 300 GeV) and are almost independent on the tanβ\tan\betaComment: Accepted by Phys.Rev.
    corecore