92 research outputs found

    A comparative study of extracellular vesicle-associated and cell-free DNA and RNA for HPV detection in oropharyngeal squamous cell carcinoma

    Get PDF
    Purpose: This study compares the detection sensitivity of two separate liquid biopsy sources, cell-free (cf) DNA/RNA and extracellular vesicle (EV)-associated DNA/RNA (EV-DNA/RNA), to identify circulating Human Papilloma Virus (HPV) DNA/RNA in plasma obtained from patients with oropharyngeal squamous cell carcinoma (OPCSCC). We also report on the longitudinal changes observed in HPV-DNA levels in response to treatment. Experimental design: A prospective study was conducted that included 22 patients with locally advanced disease and six patients with metastatic OPCSCC. Twenty-three patients had HPV-related OPCSCC defined by p16 immunohistochemistry. Levels of circulating HPV-DNA and HPV-RNA from plasma-derived cf-DNA/RNA and EV-DNA/RNA were quantified using digital droplet PCR. Results: Circulating HPV-DNA was detected with higher sensitivity in cf-DNA compared to EV-DNA at 91% vs. 42% (p = \u3c 0.001). Similarly, circulating tumoral HPV-RNA was detected at a higher sensitivity in cf-RNA compared to EV-RNA, at 83% vs. 50% (p = 0.0019). In the locally advanced cohort, 100% (n = 16) of HPV-OPCSCC patients demonstrated a reduction in circulating HPV-DNA levels in cf-DNA following curative treatment, with 81% of patients demonstrating complete clearance to undetectable levels. However, in metastatic HPV-OPCSCC patients (n = 4), HPV-DNA levels did not correlate with treatment response. Conclusion: Our study demonstrates that although HPV-DNA/RNA can be detected in EV associated DNA/RNA, cf-DNA/RNA is the more sensitive liquid biopsy medium. As circulating HPV-DNA levels were found to only correlate with treatment response in the locally advanced but not metastatic setting in our small cohort of patients, the use of HPV-DNA as a dynamic biomarker to monitor treatment response requires further evaluation. © 2020, The Author(s)

    A comparative study of extracellular vesicle-associated and cell-free DNA and RNA for HPV detection in oropharyngeal squamous cell carcinoma

    Get PDF
    Purpose: This study compares the detection sensitivity of two separate liquid biopsy sources, cell-free (cf) DNA/RNA and extracellular vesicle (EV)-associated DNA/RNA (EV-DNA/RNA), to identify circulating Human Papilloma Virus (HPV) DNA/RNA in plasma obtained from patients with oropharyngeal squamous cell carcinoma (OPCSCC). We also report on the longitudinal changes observed in HPV-DNA levels in response to treatment. Experimental design: A prospective study was conducted that included 22 patients with locally advanced disease and six patients with metastatic OPCSCC. Twenty-three patients had HPV-related OPCSCC defined by p16 immunohistochemistry. Levels of circulating HPV-DNA and HPV-RNA from plasma-derived cf-DNA/RNA and EV-DNA/RNA were quantified using digital droplet PCR. Results: Circulating HPV-DNA was detected with higher sensitivity in cf-DNA compared to EV-DNA at 91% vs. 42% (p = \u3c 0.001). Similarly, circulating tumoral HPV-RNA was detected at a higher sensitivity in cf-RNA compared to EV-RNA, at 83% vs. 50% (p = 0.0019). In the locally advanced cohort, 100% (n = 16) of HPV-OPCSCC patients demonstrated a reduction in circulating HPV-DNA levels in cf-DNA following curative treatment, with 81% of patients demonstrating complete clearance to undetectable levels. However, in metastatic HPV-OPCSCC patients (n = 4), HPV-DNA levels did not correlate with treatment response. Conclusion: Our study demonstrates that although HPV-DNA/RNA can be detected in EV associated DNA/RNA, cf-DNA/RNA is the more sensitive liquid biopsy medium. As circulating HPV-DNA levels were found to only correlate with treatment response in the locally advanced but not metastatic setting in our small cohort of patients, the use of HPV-DNA as a dynamic biomarker to monitor treatment response requires further evaluation. © 2020, The Author(s)

    The prognostic effect of KRAS mutations in non-small cell lung carcinoma revisited: A norwegian multicentre study

    Get PDF
    Background: due to emerging therapeutics targeting KRAS G12C and previous reports with conflicting results regarding the prognostic impact of KRAS and KRAS G12C in non-small cell lung cancer (NSCLC), we aimed to investigate the frequency of KRAS mutations and their associations with clinical characteristics and outcome. Since mutation subtypes have different preferences for downstream pathways, we also aimed to investigate whether there were differences in outcome according to mutation preference for the Raf, PI3K/Akt, or RalGDS/Ral pathways. Methods: retrospectively, clinicopathological data from 1233 stage I–IV non-squamous NSCLC patients with known KRAS status were reviewed. KRAS’ associations with clinical characteristics were analysed. Progression free survival (PFS) and overall survival (OS) were assessed for the following groups: KRAS wild type (wt) versus mutated, KRAS wt versus KRAS G12C versus KRAS non-G12C, among KRAS mutation subtypes and among mutation subtypes grouped according to preference for downstream pathways. Results: a total of 1117 patients were included; 38% had KRAS mutated tumours, 17% had G12C. Among KRAS mutated, G12C was the most frequent mutation in former/current smokers (45%) and G12D in never smokers (46%). There were no significant differences in survival according to KRAS status, G12C status, among KRAS mutation subtypes or mutation preference for downstream pathways. Conclusion: KRAS status or KRAS mutation subtype did not have any significant influence on PFS or OS

    Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules

    Get PDF
    Background: Microenvironment cues involved in melanoma progression are largely unknown. Melanoma is highly influenced in its aggressive phenotype by the changes it determinates in its microenvironment, such as pH decrease, in turn influencing cancer cell invasiveness, progression and tissue remodelling through an abundant secretion of exosomes, dictating cancer strategy to the whole host. A role of exosomes in driving melanoma progression under microenvironmental acidity was never described. Methods: We studied four differently staged human melanoma lines, reflecting melanoma progression, under microenvironmental acidic pHs pressure ranging between pH 6.0-6.7. To estimate exosome secretion as a function of tumor stage and environmental pH, we applied a technique to generate native fluorescent exosomes characterized by vesicles integrity, size, density, markers expression, and quantifiable by direct FACS analysis. Functional roles of exosomes were tested in migration and invasion tests. Then we performed a comparative proteomic analysis of acid versus control exosomes to elucidate a specific signature involved in melanoma progression. Results: We found that metastatic melanoma secretes a higher exosome amount than primary melanoma, and that acidic pH increases exosome secretion when melanoma is in an intermediate stage, i.e. metastatic non-invasive. We were thus able to show that acidic pH influences the intercellular cross-talk mediated by exosomes. In fact when exposed to exosomes produced in an acidic medium, pH naïve melanoma cells acquire migratory and invasive capacities likely due to transfer of metastatic exosomal proteins, favoring cell motility and angiogenesis. A Prognoscan-based meta-analysis study of proteins enriched in acidic exosomes, identified 11 genes (HRAS, GANAB, CFL2, HSP90B1, HSP90AB1, GSN, HSPA1L, NRAS, HSPA5, TIMP3, HYOU1), significantly correlating with poor prognosis, whose high expression was in part confirmed in bioptic samples of lymph node metastases. Conclusions: A crucial step of melanoma progression does occur at melanoma intermediate -stage, when extracellular acidic pH induces an abundant release and intra-tumoral uptake of exosomes. Such exosomes are endowed with pro-invasive molecules of clinical relevance, which may provide a signature of melanoma advancement

    Associations between the COVID-19 pandemic and women’s fertility intentions: a multi-country, cross-sectional (I-SHARE) study

    Get PDF
    Introduction The COVID-19 pandemic, together with the subsequent social distancing measures, could lead to shifts in family and fertility planning. This study aimed to explore the associations between the COVID-19 pandemic and changes in fertility intentions among an international sample of reproductive-aged women. Methods A multi-country, cross-sectional study based on data from 10 672 women aged 18–49 years who participated in the International Sexual Health And REproductive Health (I-SHARE) study, which organised an international online survey between July 2020 and February 2021. Factors associated with changes in fertility intentions were explored using multinomial probit regression models. Cluster-robust standard errors were used to calculate model parameters. Results Of 10 672 included reproductive-aged women, 14.4% reported changing their fertility intentions due to the pandemic, with 10.2% postponement and 4.2% acceleration. Women who had ever been isolated/quarantined were more likely to postpone their fertility intentions (adjusted odds ratio (AOR)=1.41; 95% CI 1.18 to 1.69) compared with those who had not; women who lived with a steady partner were more likely to want children sooner (AOR=1.57; 95% CI 1.10 to 2.23) compared with those who did not; and those who reported a higher frequency of getting angry, feeling frustrated, or worrying about their finances were more likely to postpone their fertility intentions. The main findings were robust in the sensitivity analyses. Conclusions Most women who changed fertility intentions because of the pandemic have postponed intentions to expand their families. The pandemic-induced exposures were associated with these postponements

    Up-regulation of cell cycle arrest protein BTG2 correlates with increased overall survival in breast cancer, as detected by immunohistochemistry using tissue microarray

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have shown that the <it>ADIPOR1</it>, <it>ADORA1</it>, <it>BTG2 </it>and <it>CD46 </it>genes differ significantly between long-term survivors of breast cancer and deceased patients, both in levels of gene expression and DNA copy numbers. The aim of this study was to characterize the expression of the corresponding proteins in breast carcinoma and to determine their correlation with clinical outcome.</p> <p>Methods</p> <p>Protein expression was evaluated using immunohistochemistry in an independent breast cancer cohort of 144 samples represented on tissue microarrays. Fisher's exact test was used to analyze the differences in protein expression between dead and alive patients. We used Cox-regression multivariate analysis to assess whether the new markers predict the survival status of the patients better than the currently used markers.</p> <p>Results</p> <p>BTG2 expression was demonstrated in a significantly lower proportion of samples from dead patients compared to alive patients, both in overall expression (<it>P </it>= 0.026) and cell membrane specific expression (<it>P </it>= 0.013), whereas neither ADIPOR1, ADORA1 nor CD46 showed differential expression in the two survival groups. Furthermore, a multivariate analysis showed that a model containing BTG2 expression in combination with HER2 and Ki67 expression along with patient age performed better than a model containing the currently used prognostic markers (tumour size, nodal status, HER2 expression, hormone receptor status, histological grade, and patient age). Interestingly, BTG2 has previously been described as a tumour suppressor gene involved in cell cycle arrest and p53 signalling.</p> <p>Conclusions</p> <p>We conclude that high-level BTG2 protein expression correlates with prolonged survival in patients with breast carcinoma.</p

    Sexual health and COVID-19: protocol for a scoping review.

    Get PDF
    BACKGROUND: Global responses to the COVID-19 pandemic have exposed and exacerbated existing socioeconomic and health inequities that disproportionately affect the sexual health and well-being of many populations, including people of color, ethnic minority groups, women, and sexual and gender minority populations. Although there have been several reviews published on COVID-19 and health disparities across various populations, none has focused on sexual health. We plan to conduct a scoping review that seeks to fill several of the gaps in the current knowledge of sexual health in the COVID-19 era. METHODS: A scoping review focusing on sexual health and COVID-19 will be conducted. We will search (from January 2020 onwards) CINAHL, Africa-Wide Information, Web of Science Core Collection, Embase, Gender Studies Database, Gender Watch, Global Health, WHO Global Literature on Coronavirus Disease Database, WHO Global Index Medicus, PsycINFO, MEDLINE, and Sociological Abstracts. Grey literature will be identified using Disaster Lit, Google Scholar, governmental websites, and clinical trials registries (e.g., ClinicalTrial.gov , World Health Organization, International Clinical Trials Registry Platform, and International Standard Randomized Controlled Trial Number Registry). Study selection will conform to the Joanna Briggs Institute Reviewers' Manual 2015 Methodology for JBI Scoping Reviews. Only English language, original studies will be considered for inclusion. Two reviewers will independently screen all citations, full-text articles, and abstract data. A narrative summary of findings will be conducted. Data analysis will involve quantitative (e.g., frequencies) and qualitative (e.g., content and thematic analysis) methods. DISCUSSION: Original research is urgently needed to mitigate the risks of COVID-19 on sexual health. The planned scoping review will help to address this gap. SYSTEMATIC REVIEW REGISTRATIONS: Systematic Review Registration: Open Science Framework osf/io/PRX8E

    Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study

    Get PDF
    BACKGROUND: Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of developing cancer. For colorectal cancer the importance of mutations in mismatch repair genes has been extensively documented. Less is known about other DNA repair pathways in colorectal carcinogenesis. In this study we have focused on the XRCC1, XRCC3 and XPD genes, involved in base excision repair, homologous recombinational repair and nucleotide excision repair, respectively. METHODS: We used a case-control study design (157 carcinomas, 983 adenomas and 399 controls) to test the association between five polymorphisms in these DNA repair genes (XRCC1 Arg(194)Trp, Arg(280)His, Arg(399)Gln, XRCC3 Thr(241)Met and XPD Lys(751)Gln), and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated by binary logistic regression model adjusting for age, gender, cigarette smoking and alcohol consumption. RESULTS: The XRCC1 280His allele was associated with an increased risk of adenomas (OR 2.30, 95% CI 1.19–4.46). The XRCC1 399Gln allele was associated with a reduction of risk of high-risk adenomas (OR 0.62, 95% CI 0.41–0.96). Carriers of the variant XPD 751Gln allele had an increased risk of low-risk adenomas (OR 1.40, 95% CI 1.03–1.89), while no association was found with risk of carcinomas. CONCLUSION: Our results suggest an increased risk for advanced colorectal neoplasia in individuals with the XRCC1 Arg(280)His polymorphism and a reduced risk associated with the XRCC1 Arg(399)Gln polymorphism. Interestingly, individuals with the XPD Lys(751)Gln polymorphism had an increased risk of low-risk adenomas. This may suggest a role in regression of adenomas

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore