61 research outputs found

    Calcium ion currents mediating oocyte maturation events

    Get PDF
    During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed

    Male Oxidative Stress Infertility (MOSI):proposed terminology and clinical practice guidelines for management of idiopathic male infertility

    Get PDF
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause

    Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility

    Get PDF
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause

    Technical aspects and clinical limitations of sperm DNA fragmentation testing in male infertility: a global survey, current guidelines, and expert recommendations.

    Get PDF
    PURPOSE: Sperm DNA fragmentation (SDF) is a functional sperm abnormality that can impact reproductive potential, for which four assays have been described in the recently published sixth edition of the WHO laboratory manual for the examination and processing of human semen. The purpose of this study was to examine the global practices related to the use of SDF assays and investigate the barriers and limitations that clinicians face in incorporating these tests into their practice. MATERIALS AND METHODS: Clinicians managing male infertility were invited to complete an online survey on practices related to SDF diagnostic and treatment approaches. Their responses related to the technical aspects of SDF testing, current professional society guidelines, and the literature were used to generate expert recommendations via the Delphi method. Finally, challenges related to SDF that the clinicians encounter in their daily practice were captured. RESULTS: The survey was completed by 436 reproductive clinicians. Overall, terminal deoxynucleotidyl transferase deoxyuridine triphosphate Nick-End Labeling (TUNEL) is the most commonly used assay chosen by 28.6%, followed by the sperm chromatin structure assay (24.1%), and the sperm chromatin dispersion (19.1%). The choice of the assay was largely influenced by availability (70% of respondents). A threshold of 30% was the most selected cut-off value for elevated SDF by 33.7% of clinicians. Of respondents, 53.6% recommend SDF testing after 3 to 5 days of abstinence. Although 75.3% believe SDF testing can provide an explanation for many unknown causes of infertility, the main limiting factors selected by respondents are a lack of professional society guideline recommendations (62.7%) and an absence of globally accepted references for SDF interpretation (50.3%). CONCLUSIONS: This study represents the largest global survey on the technical aspects of SDF testing as well as the barriers encountered by clinicians. Unified global recommendations regarding clinician implementation and standard laboratory interpretation of SDF testing are crucial

    Predicting cortical-thalamic connectivity using functional near-infrared spectroscopy and graph convolutional networks

    No full text
    Functional near-infrared spectroscopy (fNIRS) measures cortical changes in hemoglobin concentrations, yet cannot collected this information from the subcortices. To address this drawback, we propose a machine-learning-based approach to predict cortical-thalamic functional connectivity using cortical fNIRS data. We applied graph convolutional networks (GCN) on two datasets obtained from adults and neonates, respectively. Each dataset contained fNIRS data as input to the predictive models and connectivities of functional magnetic resonance imaging (fMRI) as training targets. GCN models performed better compared to conventional methods, on both identifying the connections, and regressing the quantified strengths of connections. We also propose the addition of inter-subject connections into the GCN kernels could improve performance. Our results show it is feasible to indicate subcortical activity from cortical fNIRS recordings

    Altered resting-state functional connectivity in newborns with hypoxic ischemic encephalopathy assessed using high-density functional near-infrared spectroscopy

    No full text
    Abstract Hypoxic-ischemic encephalopathy (HIE) results from a lack of oxygen to the brain during the perinatal period. HIE can lead to mortality and various acute and long-term morbidities. Improved bedside monitoring methods are needed to identify biomarkers of brain health. Functional near-infrared spectroscopy (fNIRS) can assess resting-state functional connectivity (RSFC) at the bedside. We acquired resting-state fNIRS data from 21 neonates with HIE (postmenstrual age [PMA] = 39.96), in 19 neonates the scans were acquired post-therapeutic hypothermia (TH), and from 20 term-born healthy newborns (PMA = 39.93). Twelve HIE neonates also underwent resting-state functional magnetic resonance imaging (fMRI) post-TH. RSFC was calculated as correlation coefficients amongst the time courses for fNIRS and fMRI data, respectively. The fNIRS and fMRI RSFC maps were comparable. RSFC patterns were then measured with graph theory metrics and compared between HIE infants and healthy controls. HIE newborns showed significantly increased clustering coefficients, network efficiency and modularity compared to controls. Using a support vector machine algorithm, RSFC features demonstrated good performance in classifying the HIE and healthy newborns in separate groups. Our results indicate the utility of fNIRS-connectivity patterns as potential biomarkers for HIE and fNIRS as a new bedside tool for newborns with HIE

    Silent enemy: Environmental tobacco smoke

    No full text
    Second-hand smoke, also known as environmental tobacco smoke (ETS), is one of the most harmful indoor pollutants. Exposure to ETS is a worldwide silent cause of mortality and morbidity. Although ETS had been decreased for 20 years, a lot of people who do not smoke still exposed to ETS at home, work, public places, and in vehicles. ETS is a risk factor for many important diseases such as lung cancer, chronic obstructive lung disease, asthma, cardiovascular diseases, upper and lower respiratory tract infections, and sudden infant death. In this article, the harmful effects of ETS and the effects of smoke-free environment regulation on ETS exposure were reviewed
    corecore