108 research outputs found
Robust relativistic many-body Greenâs function based approaches for assessing core ionized and excited states
A two-component contour deformation (CD) based GW method that employs frequency sampling to drastically reduce the computational effort when assessing quasiparticle states far away from the Fermi level is outlined. Compared to the canonical CD-GW method, computational scaling is reduced by an order of magnitude without sacrificing accuracy. This allows for an efficient calculation of core ionization energies. The improved computational efficiency is used to provide benchmarks for core ionized states, comparing the performance of 15 density functional approximations as KohnâSham starting points for GW calculations on a set of 65 core ionization energies of 32 small molecules. Contrary to valence states, GW calculations on core states prefer functionals with only a moderate amount of HartreeâFock exchange. Moreover, modern ab initio local hybrid functionals are also shown to provide excellent generalized KohnâSham references for core GW calculations. Furthermore, the coreâvalence separated BetheâSalpeter equation (CVS-BSE) is outlined. CVS-BSE is a convenient tool to probe core excited states. The latter is tested on a set of 40 core excitations of eight small inorganic molecules. Results from the CVS-BSE method for excitation energies and the corresponding absorption cross sections are found to be in excellent agreement with those of reference damped response BSE calculations
Tau Protein Modulates Perineuronal Extracellular Matrix Expression in the TauP301L-acan Mouse Model
Tau mutations promote the formation of tau oligomers and filaments, which are neuropathological
signs of several tau-associated dementias. Types of neurons in the CNS are spared of
tau pathology and are surrounded by a specialized form of extracellular matrix; called perineuronal
nets (PNs). Aggrecan, the major PN proteoglycans, is suggested to mediate PNs neuroprotective
function by forming an external shield preventing the internalization of misfolded tau. We recently
demonstrated a correlation between aggrecan amount and the expression and phosphorylation of tau
in a TauP310L-acan mouse model, generated by crossbreeding heterozygous aggrecan mice with a significant
reduction of aggrecan and homozygous TauP301L mice. Neurodegenerative processes have
been associated with changes of PN structure and protein signature. In this study, we hypothesized
that the structure and protein expression of PNs in this TauP310L-acan mouse is regulated by tau.
Immunohistochemical and biochemical analyses demonstrate that protein levels of PN components
differ between TauP301LHET-acanWT and TauP301LHET-acanHET mice, accompanied by changes in
the expression of protein phosphatase 2 A. In addition, tau can modulate PN components such as
brevican. Co-immunoprecipitation experiments revealed a physical connection between PN components
and tau. These data demonstrate a complex, mutual interrelation of tau and the proteoglycans
of the PN
Human iPSC-Derived Neurons with Reliable Synapses and Large Presynaptic Action Potentials
Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9â
weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100â
Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9â
weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to âŒ25â
mV and short durations of âŒ0.5â
ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatiotemporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain
The furan microsolvation blind challenge for quantum chemical methods: First steps
© 2018 Author(s). Herein we present the results of a blind challenge to quantum chemical methods in the calculation of dimerization preferences in the low temperature gas phase. The target of study was the first step of the microsolvation of furan, 2-methylfuran and 2,5-dimethylfuran with methanol. The dimers were investigated through IR spectroscopy of a supersonic jet expansion. From the measured bands, it was possible to identify a persistent hydrogen bonding OH-O motif in the predominant species. From the presence of another band, which can be attributed to an OH-Ï interaction, we were able to assert that the energy gap between the two types of dimers should be less than or close to 1 kJ/mol across the series. These values served as a first evaluation ruler for the 12 entries featured in the challenge. A tentative stricter evaluation of the challenge results is also carried out, combining theoretical and experimental results in order to define a smaller error bar. The process was carried out in a double-blind fashion, with both theory and experimental groups unaware of the results on the other side, with the exception of the 2,5-dimethylfuran system which was featured in an earlier publication
Hook proteins: association with Alzheimer pathology and regulatory role of Hook3 inAmyloid beta generation
Defects in intracellular transport are implicated in the pathogenesis of Alzheimerâs disease (AD). Hook proteins are a family of cytoplasmic linker proteins that participate in endosomal transport. In this study we show that Hook1 and Hook3 are expressed in neurons while Hook2 is predominantly expressed in astrocytes. Furthermore, Hook proteins are associated with pathological hallmarks in AD; Hook1 and Hook3 are localized to tau aggregates and Hook2 to glial components within amyloid plaques. Additionally, the expression of Hook3 is reduced in AD. Modelling of Hook3 deficiency in cultured cells leads to slowing of endosomal transport and increases ÎČ-amyloid production. We propose that Hook3 plays a role in pathogenic events exacerbating AD
A novel OSA-related model of intermittent hypoxia in endothelial cells under flow reveals pronounced inflammatory pathway activation
Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder characterized by recurrent episodes of upper airway obstruction and subsequent hypoxia. In patients with OSA, severity and number of these hypoxic events positively correlate with the extent of associated cardiovascular pathology. The molecular mechanisms underlying intermittent hypoxia (IH)-driven cardiovascular disease in OSA, however, remain poorly understoodâpartly due to the lack of adequate experimental models. Here, we present a novel experimental approach that utilizes primary human endothelial cells cultivated under shear stress. Oxygen partial pressure dynamics were adopted in our in vitro model according to the desaturation-reoxygenation patterns identified in polysomnographic data of severe OSA patients (n = 10, with 892 severe desaturations, SpO2<80%). Using western blot analysis, we detected a robust activation of the two major inflammatory pathways ERK and NF-ÎșB in endothelial cells, whereas no HIF1α and HIF2α protein stabilization was observed. In line with these findings, mRNA and protein expression of the pro-inflammatory adhesion and signaling molecule ICAM-1 and the chemokine CCL2 were significantly increased. Hence, we established a novel in vitro model for deciphering OSA-elicited effects on the vascular endothelium. First data obtained in this model point to the endothelial activation of pro-inflammatory rather than hypoxia-associated pathways in OSA. Future studies in this model might contribute to the development of targeted strategies against OSA-induced, secondary cardiovascular disease
The first microsolvation step for furans : new experiments and benchmarking strategies
The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight
TURBOMOLE: Today and Tomorrow
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, lightâmatter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLEâs functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, HartreeâFock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties
A glutaminyl cyclase-catalyzed α-synuclein modification identified in human synucleinopathies
Parkinsonâs disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degeneration of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus. We argue that glutaminyl cyclase (QC) may catalyze the pyroglutamate (pGlu)79-α-synuclein formation and, thereby, contribute to enhanced aggregation and compromised degradation of α-synuclein in human synucleinopathies. Here, the kinetic characteristics of Gln79-α-synuclein conversion into the pGlu-form by QC are shown using enzymatic assays and mass spectrometry. Thioflavin T assays and electron microscopy demonstrated a decreased potential of pGlu79-α-synuclein to form fibrils. However, size exclusion chromatography and cell viability assays revealed an increased propensity of pGlu79-α-synuclein to form oligomeric aggregates with high neurotoxicity. In brains of wild-type mice, QC and α-synuclein were co-expressed by dopaminergic SN neurons. Using a specific antibody against the pGlu-modified neo-epitope of α-synuclein, pGlu79-α-synuclein aggregates were detected in association with QC in brains of two transgenic mouse lines with human α-synuclein overexpression. In human brain samples of PD and dementia with Lewy body subjects, pGlu79-α-synuclein was shown to be present in SN neurons, in a number of Lewy bodies and in dystrophic neurites. Importantly, there was a spatial co-occurrence of pGlu79-α-synuclein with the enzyme QC in the human SN complex and a defined association of QC with neuropathological structures. We conclude that QC catalyzes the formation of oligomer-prone pGlu79-α-synuclein in human synucleinopathies, which mayâin analogy to pGlu-AÎČ peptides in Alzheimerâs diseaseâact as a seed for pathogenic protein aggregation
- âŠ