175 research outputs found

    Late Holocene vegetation and fire dynamics on the summits of the Guayana Highlands: The Uei-tepui palynological record

    Get PDF
    The summits of the tepuis (sandstone table mountains of the Neotropical Guayana region-Guayana Highlands, GH) have been considered valuable for palaeoecological studies due to their pristine nature, which emphasizes the role of natural (i.e. non-human) factors on ecological change. Anthropogenic fires, very frequent in the surrounding Gran Sabana (GS) uplands, have very rarely been documented in the GH, and are therefore not considered an important ecological factor in the high-tepui biome. This paper reports the palynological and charcoal results of a Late Holocene sequence from the summit of Uei-tepui (2104 m elevation), where extensive signs of fire were recently observed. Since ~. 2000 cal yr BP, the landscape of the study site has been dominated by meadows with occasional shrubs and cloud forests, which underwent expansions and contractions driven by climate changes and fire. A major vegetation shift occurred in the mid-18th century, when a sustained increase in local fires favoured the expansion of the low and spreading Cyrilla racemiflora shrublands at the expense of meadows and forests. Uei-tepui fires most probably were the result of human activities and reached the summit under study from the GS uplands through the vegetated slopes that characterize this tepui. The mostly anthropogenic nature of these fires, especially the more recent ones, is supported by the initial occurrence of wetter conditions, and by its coincidence with significant social changes in the GS indigenous populations, mainly the European contact. The emergence of fire as a disturbing agent of the GH biome highlights the need for an effective management plan in the GS uplands, where the vast majority of present-day fires originate, and designed in collaboration with the indigenous communities. Proactive conservation measures are considered even more important under future warming projections in the area. © 2016 Elsevier B.V.This research was supported by projects BIOCON 2004 90/05, BIOCON 08-188/09 (BBVA Foundation, Spain), CGL2006-00974/BOS (Ministry of Education and Science, Spain) and CGL2009-07069/BOS (Ministry of Science and Innovation, Spain) to V. Rull, and a predoctoral grant to E. Safont from the University of Barcelona. Fieldwork permits were provided by the Ministry of Science and Technology of Venezuela (no. 0000013, 5 Jan. 2007) and the Ministry of Environment of the same country (no. IE-085, 9 Feb. 2007).Peer reviewe

    Deletion of fabN in Enterococcus faecalis results in unsaturated fatty acid auxotrophy and decreased release of inflammatory cytokines

    Get PDF
    The Gram-positive bacterium Enterococcus faecalis can cause life-threatening infections and is resistant to several commonly used antibiotics. The type II fatty acid pathway in bacteria is discussed as a potential target for antimicrobial therapy. However, it was shown that inhibition or deletion of its enzymes can be rescued in Gram-positive bacteria by supplementation with fatty acids. Here we show that by deletion of the fabN gene, which is essential for unsaturated fatty acid (UFA) synthesis in E. faecalis, growth is impaired but can be rescued by supplementation with oleic acid or human serum. Nonetheless, we demonstrate alterations of the UFA profile after supplementation with oleic acid in the fabN mutant using a specific glycolipid. In addition, we demonstrate that cytokine release invitro is almost abolished after stimulation of mouse macrophages by the mutant in comparison to the wild type. The results indicate that fabN is not a suitable target for antimicrobials as UFA auxotrophy can be overcome. However, deletion of fabN resulted in a decreased inflammatory response indicating that fabN and resulting UFA synthesis are relevant for virulence

    Deletion of the glycosyltransferase bgsB of Enterococcus faecalis leads to a complete loss of glycolipids from the cell membrane and to impaired biofilm formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deletion of the glycosyltransferase <it>bgsA </it>in <it>Enterococcus faecalis </it>leads to loss of diglucosyldiacylglycerol from the cell membrane and accumulation of its precursor monoglucosyldiacylglycerol, associated with impaired biofilm formation and reduced virulence in vivo. Here we analyzed the function of a putative glucosyltransferase EF2890 designated <it>biofilm-associated glycolipid synthesis B (bgsB) </it>immediately downstream of <it>bgsA</it>.</p> <p>Results</p> <p>A deletion mutant was constructed by targeted mutagenesis in <it>E. faecalis </it>strain 12030. Analysis of cell membrane extracts revealed a complete loss of glycolipids from the cell membrane. Cell walls of 12030Δ<it>bgsB </it>contained approximately fourfold more LTA, and <sup>1</sup>H-nuclear magnetic resonance (NMR) spectroscopy suggested that the higher content of cellular LTA was due to increased length of the glycerol-phosphate polymer of LTA. 12030Δ<it>bgsB </it>was not altered in growth, cell morphology, or autolysis. However, attachment to Caco-2 cells was reduced to 50% of wild-type levels, and biofilm formation on polystyrene was highly impaired. Despite normal resistance to cationic antimicrobial peptides, complement and antibody-mediated opsonophagocytic killing in vitro, 12030Δ<it>bgsB </it>was cleared more rapidly from the bloodstream of mice than wild-type bacteria. Overall, the phenotype resembles the respective deletion mutant in the <it>bgsA </it>gene. Our findings suggest that loss of diglucosyldiacylglycerol or the altered structure of LTA in both mutants account for phenotypic changes observed.</p> <p>Conclusions</p> <p>In summary, BgsB is a glucosyltransferase that synthesizes monoglucosyldiacylglycerol. Its inactivation profoundly affects cell membrane composition and has secondary effects on LTA biosynthesis. Both cell-membrane amphiphiles are critical for biofilm formation and virulence of <it>E. faecalis</it>.</p

    Fecal Luminal Factors from Patients with Gastrointestinal Diseases Alter Gene Expression Profiles in Caco-2 Cells and Colonoids

    Get PDF
    Previous in vitro studies have shown that the intestinal luminal content, including metabolites, possibly regulates epithelial layer responses to harmful stimuli and promotes disease. Therefore, we aimed to test the hypothesis that fecal supernatants from patients with colon cancer (CC), ulcerative colitis (UC) and irritable bowel syndrome (IBS) contain distinct metabolite profiles and establish their effects on Caco-2 cells and human-derived colon organoids (colonoids). The metabolite profiles of fecal supernatants were analyzed by liquid chromatography–mass spectrometry and distinguished patients with CC (n = 6), UC (n = 6), IBS (n = 6) and healthy subjects (n = 6). Caco-2 monolayers and human apical-out colonoids underwent stimulation with fecal supernatants from different patient groups and healthy subjects. Their addition did not impair monolayer integrity, as measured by transepithelial electrical resistance; however, fecal supernatants from different patient groups and healthy subjects altered the gene expression of Caco-2 monolayers, as well as colonoid cultures. In conclusion, the stimulation of Caco-2 cells and colonoids with fecal supernatants derived from CC, UC and IBS patients altered gene expression profiles, potentially reflecting the luminal microenvironment of the fecal sample donor. This experimental approach allows for investigating the crosstalk at the gut barrier and the effects of the gut microenvironment in the pathogenesis of intestinal diseases

    Serotype O:8 isolates in the Yersinia pseudotuberculosis complex have different O-antigen gene clusters and produce various forms of rough LPS

    Get PDF
    In Yersinia pseudotuberculosis complex, the O-antigen of LPS is used for the serological characterization of strains, and 21 serotypes have been identified to date. The O-antigen biosynthesis gene cluster and corresponding O-antigen structure have been described for 18, leaving O:8, O:13 and O:14 unresolved. In this study, two O:8 isolates were examined. The O-antigen gene cluster sequence of strain 151 was near identical to serotype O:4a, though a frame-shift mutation was found in ddhD, while No. 6 was different to 151 and carried the O:1b gene cluster. Structural analysis revealed that No. 6 produced a deeply truncated LPS, suggesting a mutation within the waaF gene. Both ddhD and waaF were cloned and expressed in 151 and No. 6 strains, respectively, and it appeared that expression of ddhD gene in strain 151 restored the O-antigen on LPS, while waaF in No. 6 resulted in an LPS truncated less severely but still without the O-antigen, suggesting that other mutations occurred in this strain. Thus, both O:8 isolates were found to be spontaneous O-antigen-negative mutants derived from other validated serotypes, and we propose to remove this serotype from the O-serotyping scheme, as the O:8 serological specificity is not based on the O-antigen.Peer reviewe

    Prolonged lipopolysaccharide-induced illness elevates glucagon-like peptide-1 and suppresses peptide YY:A human-randomized cross-over trial

    Get PDF
    Severe systemic inflammation is associated with nausea, loss of appetite, and delayed gastric emptying, which increases hospitalization admission length and mortality rate. There is a lack of human controlled studies exploring gastric emptying rates and underlying mechanisms during inflammatory conditions. We aimed to investigate if systemic inflammation in young men delays gastro‐intestinal transit times, lowers motility, and affects gastrointestinal hormone secretion. This substudy of a randomized crossover trial investigated eight healthy young men on two separate occasions; (I) following an overnight fast (healthy conditions/HC) and (II) fasting and bedrest combined with two lipopolysaccharide (LPS) injections of 1 ng kg(−1) following an overnight fast and 0.5 ng kg(−1) following another 24 h (systemic inflammation/SI). A standardized protein beverage and a SmartPill capsule (a wireless gastrointestinal monitoring system) were swallowed during each occasion. Whole gut transit time was comparable between HC and SI. SI decreased gastric mean pressure peak amplitude (p = 0.04) and increased pH rise across the pylorus and small bowel pH (p = 0.02) compared with HC. Glucagon‐like peptide‐1 was elevated during SI compared with HC (p = 0.04). Peptide YY was lower during SI compared with HC (p = 0.007). Prolonged LPS exposure combined with fasting and bedrest elevated glucagon‐like peptide 1 concentrations, which may play a role for the nausea and loss of appetite typically associated with SI

    Resistance to Sclerotinia sclerotiorum in wild Brassica species and the importance of Sclerotinia subarctica as a Brassica pathogen

    Get PDF
    Brassica crops are of global importance with oilseed rape (Brassica napus) accounting for 13% of edible oil production. All Brassica are susceptible to Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, a generalist fungal pathogen causing disease in over 400 plant species. Generally, sources of plant resistance result in partial control of the pathogen although some studies have identified wild Brassica species that are highly resistant. The related pathogen S. subarctica has also been reported on Brassica but its aggressiveness in relation to S. sclerotiorum is unknown. In this study, detached leaf and petiole assays were used to identify new sources of resistance to S. sclerotiorum within a wild Brassica C genome diversity set. High level resistance was observed in B. incana and B. cretica in petiole assays, while wild B. oleracea and B. incana lines were the most resistant in leaf assays. A B. bourgeai line showed both partial petiole and leaf resistance. Although there was no correlation between the two assays, resistance in the detached petiole assay was correlated with stem resistance in mature plants. When tested on commercial cultivars of B. napus, B. oleracea and B. rapa, selected isolates of S. subarctica exhibited comparable aggressiveness to S. sclerotiorum indicating it can be a significant pathogen of Brassica. This is the first study to identify B. cretica as a source of resistance to S. sclerotiorum and to report resistance in other wild Brassica species to a UK isolate, hence providing resources for breeding of resistant cultivars suitable for Europe

    Serological characterization of the enterobacterial common antigen substitution of the lipopolysaccharide of "Yersinia enterocolitica" O:3

    Get PDF
    Enterobacterial common antigen (ECA) is a polysaccharide present in all members of Enterobacteriaceae anchored either via phosphatidylglycerol (PG) or LPS to the outer leaflet of the outer membrane (ECAPG and ECALPS, respectively). Only the latter form is ECAimmunogenic. We previously demonstrated that Yersinia enterocolitica O: 3 and its rough (Ospecific polysaccharide-negative) mutants were ECA-immunogenic, suggesting that they contained ECALPS; however, it was not known which part of the LPS core region was involved in ECA binding. To address this, we used a set of three deep-rough LPS mutants for rabbit immunization. The polyvalent antisera obtained were: (i) analysed for the presence of anti-LPS and anti-ECA antibodies; (ii) treated with caprylic acid (CA) to precipitate IgM antibodies and protein aggregates; and (iii) adsorbed with live ECA-negative bacteria to obtain specific anti-ECA antisera. We demonstrated the presence of antibodies specific for both ECAPG and ECALPS in all antisera obtained. Both CA treatment and adsorption with ECA-negative bacteria efficiently removed anti-LPS antibodies, resulting in specific anti-ECA sera. The LPS of the ECALPS-positive deepest-rough mutant contained only lipid A and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residues of the inner core, suggesting that ECALPS was linked to the Kdo region of LPS in Y. enterocolitica O:3

    Paradigmenwechsel in der Arbeitsmarkt- und Sozialpolitik?

    Get PDF
    <div><p>Climate change is forcing many plant species to shift their range in search of adequate environmental conditions, being localized endemic species particularly at risk on mountain summits. The Pantepui biogeographic province, a set of flat-topped mountain summits (called <i>tepuis</i>) of northern South America, contains both high plant diversity and a high degree of endemism. Previous studies based on warming projections for the area suggested that half of the Pantepui endemic flora would disappear due to habitat loss by 2100. In this study, we selected one of the best-explored tepuis, Roraima-tepui, to establish the baseline of diversity and endemism for comparisons with historical data and future monitoring surveys, aimed at testing the hypothesis of upward migration of plants in response to global warming. We also analysed floristic and physiognomic features of the Eastern Tepui Chain (ETC, the mountain range where Roraima is located), and the phytogeographic patterns of both the ETC and Pantepui. The Roraima summit contains 227 species, including 44 new records, 13 exotic species (some of them with high invasive potential), and at least one species new to science. At the ETC level, Roraima is the tepui with highest species richness and degree of endemism, and shows a relatively high floristic similarity with KukenĂĄn and IlĂș. Herbaceous species dominate over shrubs on these tepuis, Tramen and Maringma, whereas on YuruanĂ­, KaraurĂ­n and Uei, they reach similar abundances. At the Pantepui level, endemic species have highly localized distribution patterns (17% local endemics). Conservation opportunities are evaluated in light of these results.</p></div
    • 

    corecore