43 research outputs found
Teratology Primer-2nd Edition (7/9/2010)
Foreword:
What is Teratology?
“What a piece of work is an embryo!” as Hamlet might have said. “In form and moving how express and admirable! In complexity how infinite!” It starts as a single cell, which by repeated divisions gives rise to many genetically identical cells. These cells receive signals from their surroundings and from one another as to where they are in this ball of cells —front or back, right or left, headwards or tailwards, and what they are destined to become. Each cell commits itself to being one of many types; the cells migrate, combine into tissues, or get out of the way by dying at predetermined times and places. The tissues signal one another to take their own pathways; they bend, twist, and form organs. An organism emerges. This wondrous transformation from single celled simplicity to myriad-celled complexity is programmed by genes that, in the greatest mystery of all, are turned on and off at specified times and places to coordinate the process. It is a wonder that this marvelously emergent operation, where there are so many opportunities for mistakes, ever produces a well-formed and functional organism.
And sometimes it doesn’t. Mistakes occur. Defective genes may disturb development in ways that lead to death or to malformations. Extrinsic factors may do the same. “Teratogenic” refers to factors that cause malformations, whether they be genes or environmental agents. The word comes from the Greek “teras,” for “monster,” a term applied in ancient times to babies with severe malformations, which were considered portents or, in the Latin, “monstra.”
Malformations can happen in many ways. For example, when the neural plate rolls up to form the neural tube, it may not close completely, resulting in a neural tube defect—anencephaly if the opening is in the head region, or spina bifida if it is lower down. The embryonic processes that form the face may fail to fuse, resulting in a cleft lip. Later, the shelves that will form the palate may fail to move from the vertical to the horizontal, where they should meet in the midline and fuse, resulting in a cleft palate. Or they may meet, but fail to fuse, with the same result. The forebrain may fail to induce the overlying tissue to form the eye, so there is no eye (anophthalmia). The tissues between the toes may fail to break down as they should, and the toes remain webbed.
Experimental teratology flourished in the 19th century, and embryologists knew well that the development of bird and frog embryos could be deranged by environmental “insults,” such as lack of oxygen (hypoxia). But the mammalian uterus was thought to be an impregnable barrier that would protect the embryo from such threats. By exclusion, mammalian malformations must be genetic, it was thought.
In the early 1940s, several events changed this view. In Australia an astute ophthalmologist, Norman Gregg, established a connection between maternal rubella (German measles) and the triad of cataracts, heart malformations, and deafness. In Cincinnati Josef Warkany, an Austrian pediatrician showed that depriving female rats of vitamin B (riboflavin) could cause malformations in their offspring— one of the early experimental demonstrations of a teratogen. Warkany was trying to produce congenital cretinism by putting the rats on an iodine deficient diet. The diet did indeed cause malformations, but not because of the iodine deficiency; depleting the diet of iodine had also depleted it of riboflavin!
Several other teratogens were found in experimental animals, including nitrogen mustard (an anti cancer drug), trypan blue (a dye), and hypoxia (lack of oxygen). The pendulum was swinging back; it seemed that malformations were not genetically, but environmentally caused.
In Montreal, in the early 1950s, Clarke Fraser’s group wanted to bring genetics back into the picture. They had found that treating pregnant mice with cortisone caused cleft palate in the offspring, and showed that the frequency was high in some strains and low in others. The only difference was in the genes. So began “teratogenetics,” the study of how genes influence the embryo’s susceptibility to teratogens.
The McGill group went on to develop the idea that an embryo’s genetically determined, normal, pattern of development could influence its susceptibility to a teratogen— the multifactorial threshold concept. For instance, an embryo must move its palate shelves from vertical to horizontal before a certain critical point or they will not meet and fuse. A teratogen that causes cleft palate by delaying shelf movement beyond this point is more likely to do so in an embryo whose genes normally move its shelves late.
As studies of the basis for abnormal development progressed, patterns began to appear, and the principles of teratology were developed. These stated, in summary, that the probability of a malformation being produced by a teratogen depends on the dose of the agent, the stage at which the embryo is exposed, and the genotype of the embryo and mother.
The number of mammalian teratogens grew, and those who worked with them began to meet from time to time, to talk about what they were finding, leading, in 1960, to the formation of the Teratology Society. There were, of course, concerns about whether these experimental teratogens would be a threat to human embryos, but it was thought, by me at least, that they were all “sledgehammer blows,” that would be teratogenic in people only at doses far above those to which human embryos would be exposed. So not to worry, or so we thought.
Then came thalidomide, a totally unexpected catastrophe. The discovery that ordinary doses of this supposedly “harmless” sleeping pill and anti-nauseant could cause severe malformations in human babies galvanized this new field of teratology. Scientists who had been quietly working in their laboratories suddenly found themselves spending much of their time in conferences and workshops, sitting on advisory committees, acting as consultants for pharmaceutical companies, regulatory agencies, and lawyers, as well as redesigning their research plans.
The field of teratology and developmental toxicology expanded rapidly. The following pages will show how far we have come, and how many important questions still remain to be answered. A lot of effort has gone into developing ways to predict how much of a hazard a particular experimental teratogen would be to the human embryo (chapters 9–19). It was recognized that animal studies might not prove a drug was “safe” for the human embryo (in spite of great pressure from legislators and the public to do so), since species can vary in their responses to teratogenic exposures. A number of human teratogens have been identified, and some, suspected of teratogenicity, have been exonerated—at least of a detectable risk (chapters 21–32). Regulations for testing drugs before market release have greatly improved (chapter 14). Other chapters deal with how much such things as population studies (chapter 11), post-marketing surveillance (chapter 13), and systems biology (chapter 16) add to our understanding. And, in a major advance, the maternal role of folate in preventing neural tube defects and other birth defects is being exploited (chapter 32). Encouraging women to take folic acid supplements and adding folate to flour have produced dramatic falls in the frequency of neural tube defects in many parts of the world.
Progress has been made not only in the use of animal studies to predict human risks, but also to illumine how, and under what circumstances, teratogens act to produce malformations (chapters 2–8). These studies have contributed greatly to our knowledge of abnormal and also normal development. Now we are beginning to see exactly when and where the genes turn on and off in the embryo, to appreciate how they guide development and to gain exciting new insights into how genes and teratogens interact. The prospects for progress in the war on birth defects were never brighter.
F. Clarke Fraser McGill University (Emeritus) Montreal, Quebec, Canad
Cost-utility analysis of molnupiravir plus usual care versus usual care alone as early treatment for community-based adults with COVID-19 and increased risk of adverse outcomes in the UK PANORAMIC trial
BACKGROUND: The cost-effectiveness of molnupiravir, an oral antiviral for early treatment of SARS-CoV-2, has not been established in vaccinated populations.
AIM: To evaluate the cost-effectiveness of molnupiravir relative to usual care alone among mainly vaccinated community-based people at higher risk of severe outcomes from COVID-19 over six months.
DESIGN AND SETTING: Economic evaluation of the PANORAMIC trial in the UK.
METHOD: A cost-utility analysis that adopted a UK National Health Service and personal social services perspective and a six-month time horizon was performed using PANORAMIC trial data. Cost-effectiveness was expressed in terms of incremental cost per quality-adjusted life year (QALY) gained. Sensitivity and subgroup analyses assessed the impacts of uncertainty and heterogeneity. Threshold analysis explored the price for molnupiravir consistent with likely reimbursement.
RESULTS: In the base case analysis, molnupiravir had higher mean costs of £449 (95% confidence interval [CI] 445 to 453) and higher mean QALYs of 0.0055 (95% CI 0.004 to 0.007) than usual care (mean incremental cost per QALY of £81190). Sensitivity and subgroup analyses showed similar results, except those aged ≥75 years with a 55% probability of being cost-effective at a £30000 per QALY threshold. Molnupiravir would have to be priced around £147 per course to be cost-effective at a £15000 per QALY threshold.
CONCLUSION: Molnupiravir at the current cost of £513 per course is unlikely to be cost-effective relative to usual care over a six-month time horizon among mainly vaccinated COVID-19 patients at increased risk of adverse outcomes, except those aged ≥75 years
Platform adaptive trial of novel antivirals for early treatment of COVID-19 In the community (PANORAMIC): protocol for a randomised, controlled, open-label, adaptive platform trial of community novel antiviral treatment of COVID-19 in people at increased risk of more severe disease
Introduction: There is an urgent need to determine the safety, effectiveness and cost-effectiveness of novel antiviral treatments for COVID-19 in vaccinated patients in the community at increased risk of morbidity and mortality from COVID-19.
//
Methods and analysis: PANORAMIC is a UK-wide, open-label, prospective, adaptive, multiarm platform, randomised clinical trial that evaluates antiviral treatments for COVID-19 in the community. A master protocol governs the addition of new antiviral treatments as they become available, and the introduction and cessation of existing interventions via interim analyses. The first two interventions to be evaluated are molnupiravir (Lagevrio) and nirmatrelvir/ritonavir (Paxlovid). Eligibility criteria: community-dwelling within 5 days of onset of symptomatic COVID-19 (confirmed by PCR or lateral flow test), and either (1) aged 50 years and over, or (2) aged 18–49 years with qualifying comorbidities. Registration occurs via the trial website and by telephone. Recruitment occurs remotely through the central trial team, or in person through clinical sites. Participants are randomised to receive either usual care or a trial drug plus usual care. Outcomes are collected via a participant-completed daily electronic symptom diary for 28 days post randomisation. Participants and/or their Trial Partner are contacted by the research team after days 7, 14 and 28 if the diary is not completed, or if the participant is unable to access the diary. The primary efficacy endpoint is all-cause, non-elective hospitalisation and/or death within 28 days of randomisation. Multiple prespecified interim analyses allow interventions to be stopped for futility or superiority based on prespecified decision criteria. A prospective economic evaluation is embedded within the trial.
//
Ethics and dissemination: Ethical approval granted by South Central–Berkshire REC number: 21/SC/0393; IRAS project ID: 1004274. Results will be presented to policymakers and at conferences, and published in peer-reviewed journals.
//
Trial registration number: ISRCTN30448031; EudraCT number: 2021-005748-31
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Molnupiravir Plus Usual Care Versus Usual Care Alone as Early Treatment for Adults with COVID-19 at Increased Risk of Adverse Outcomes (PANORAMIC): Preliminary Analysis from the United Kingdom Randomised, Controlled Open-Label, Platform Adaptive Trial
Background: The safety, effectiveness and cost-effectiveness of molnupiravir, an oral antiviral medication for SARS-CoV-2, in patients in the community who are multiply-vaccinated and at increased risk of morbidity and mortality from COVID-19, has not been established. We aimed to determine whether molnupiravir added to usual care reduced hospital admissions/deaths among people at higher risk from COVID-19, and here report our preliminary analyses.
Methods: Participants in this UK multicentre, open-label, adaptive, multi-arm, platform, randomised controlled trial were aged ≥50, or ≥18 years with comorbidities, and unwell ≤5 days with confirmed COVID-19 in the community, and were randomised to usual care or usual care plus molnupiravir (800mg twice daily for 5 days). The primary outcome measure was all-cause hospitalisation/death within 28 days, analysed using Bayesian models. The main secondary outcome measure was time to first self-reported recovery. A sub-set of participants in each group were assessed for the virology primary outcome measure of day seven SARS-CoV-2 viral load. Trial registration: ISRCTN30448031
Findings: Between December 8, 2021 and April 27, 2022, 25783 participants were randomised to molnupiravir plus usual care (n=12821) or usual care alone (n=12962). Mean (range) age of participants was 56·6 years (18 to 99), 58·6% were female, and 99% had at least one dose of a SARS-CoV-2 vaccine. The median duration of symptoms prior to randomisation was two days (IQR 1 – 3), the median number of days from symptom onset to starting to take the medication was three days (IQR 3 – 4), 87% (11109/11997) received their medication within five days of symptom onset, and 95·4% (n=11857) of participants randomised to molnupiravir reported taking molnupiravir for five days. Primary outcome measure data were available in 25000 (97%) participants and included in this analysis. 103/12516 (0·8%) hospitalisations/deaths occurred in the molnupiravir group versus 96/12484 (0·8%) in usual care alone with a posterior probability of superiority of 0·34 (adjusted odds ratio 1·061 (95% Bayesian credible interval [BCI]) 0·80 to 1·40). Estimates were similar for all subgroups. The observed median (IQR) time-to-first-recovery from randomisation was 9 (5–23) days in molnupiravir and 15 (7–not reached) days in usual care. There was an estimated benefit of 4·2 (95% BCI: 3·8 – 4·6) days in time-to-first-recovery (TTR) giving a posterior probability of superiority of >0·999 (estimated median TTR 10·3 [10·2 – 10·6] days vs 14·5 [14·2 – 14·9] days respectively; hazard ratio [95% BCI], 1·36 [1·3–1·4] days), which met the pre-specified superiority threshold. On day 7, SARS-CoV-2 virus was below detection levels in 7/34 (21%) of the molnupiravir group, versus 1/39 (3%) in the usual care group (p=0.039), and mean viral load was lower in the molnupiravir group compared with those receiving usual care [(SD) of log10(viral load) 3·82 (1·40) in the molnupiravir group and 4.93 (1·38) in the usual care group, (P<0·001)]. 59 (0·4%) participants experienced serious adverse events in the molnupiravir group and 52 (0·4%) in usual care.
Interpretation: In this preliminary analysis, we found that molnupiravir did not reduce already low hospitalisations/deaths among higher risk, vaccinated adults with COVID-19 in the community, but resulted in faster time to recovery, and reduced viral detection and load.
Funding: This project is funded by the NIHR (NIHR135366). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial
Background:
The safety, effectiveness, and cost-effectiveness of molnupiravir, an oral antiviral medication for SARS-CoV-2, has not been established in vaccinated patients in the community at increased risk of morbidity and mortality from COVID-19. We aimed to establish whether the addition of molnupiravir to usual care reduced hospital admissions and deaths associated with COVID-19 in this population.
Methods:
PANORAMIC was a UK-based, national, multicentre, open-label, multigroup, prospective, platform adaptive randomised controlled trial. Eligible participants were aged 50 years or older—or aged 18 years or older with relevant comorbidities—and had been unwell with confirmed COVID-19 for 5 days or fewer in the community. Participants were randomly assigned (1:1) to receive 800 mg molnupiravir twice daily for 5 days plus usual care or usual care only. A secure, web-based system (Spinnaker) was used for randomisation, which was stratified by age (<50 years vs ≥50 years) and vaccination status (yes vs no). COVID-19 outcomes were tracked via a self-completed online daily diary for 28 days after randomisation. The primary outcome was all-cause hospitalisation or death within 28 days of randomisation, which was analysed using Bayesian models in all eligible participants who were randomly assigned. This trial is registered with ISRCTN, number 30448031.
Findings:
Between Dec 8, 2021, and April 27, 2022, 26 411 participants were randomly assigned, 12 821 to molnupiravir plus usual care, 12 962 to usual care alone, and 628 to other treatment groups (which will be reported separately). 12 529 participants from the molnupiravir plus usual care group, and 12 525 from the usual care group were included in the primary analysis population. The mean age of the population was 56·6 years (SD 12·6), and 24 290 (94%) of 25 708 participants had had at least three doses of a SARS-CoV-2 vaccine. Hospitalisations or deaths were recorded in 105 (1%) of 12 529 participants in the molnupiravir plus usual care group versus 98 (1%) of 12 525 in the usual care group (adjusted odds ratio 1·06 [95% Bayesian credible interval 0·81–1·41]; probability of superiority 0·33). There was no evidence of treatment interaction between subgroups. Serious adverse events were recorded for 50 (0·4%) of 12 774 participants in the molnupiravir plus usual care group and for 45 (0·3%) of 12 934 in the usual care group. None of these events were judged to be related to molnupiravir.
Interpretation:
Molnupiravir did not reduce the frequency of COVID-19-associated hospitalisations or death among high-risk vaccinated adults in the community
Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial
BackgroundThe safety, effectiveness, and cost-effectiveness of molnupiravir, an oral antiviral medication for SARS-CoV-2, has not been established in vaccinated patients in the community at increased risk of morbidity and mortality from COVID-19. We aimed to establish whether the addition of molnupiravir to usual care reduced hospital admissions and deaths associated with COVID-19 in this population.MethodsPANORAMIC was a UK-based, national, multicentre, open-label, multigroup, prospective, platform adaptive randomised controlled trial. Eligible participants were aged 50 years or older—or aged 18 years or older with relevant comorbidities—and had been unwell with confirmed COVID-19 for 5 days or fewer in the community. Participants were randomly assigned (1:1) to receive 800 mg molnupiravir twice daily for 5 days plus usual care or usual care only. A secure, web-based system (Spinnaker) was used for randomisation, which was stratified by age (<50 years vs ≥50 years) and vaccination status (yes vs no). COVID-19 outcomes were tracked via a self-completed online daily diary for 28 days after randomisation. The primary outcome was all-cause hospitalisation or death within 28 days of randomisation, which was analysed using Bayesian models in all eligible participants who were randomly assigned. This trial is registered with ISRCTN, number 30448031.FindingsBetween Dec 8, 2021, and April 27, 2022, 26 411 participants were randomly assigned, 12 821 to molnupiravir plus usual care, 12 962 to usual care alone, and 628 to other treatment groups (which will be reported separately). 12 529 participants from the molnupiravir plus usual care group, and 12 525 from the usual care group were included in the primary analysis population. The mean age of the population was 56·6 years (SD 12·6), and 24 290 (94%) of 25 708 participants had had at least three doses of a SARS-CoV-2 vaccine. Hospitalisations or deaths were recorded in 105 (1%) of 12 529 participants in the molnupiravir plus usual care group versus 98 (1%) of 12 525 in the usual care group (adjusted odds ratio 1·06 [95% Bayesian credible interval 0·81–1·41]; probability of superiority 0·33). There was no evidence of treatment interaction between subgroups. Serious adverse events were recorded for 50 (0·4%) of 12 774 participants in the molnupiravir plus usual care group and for 45 (0·3%) of 12 934 in the usual care group. None of these events were judged to be related to molnupiravir.InterpretationMolnupiravir did not reduce the frequency of COVID-19-associated hospitalisations or death among high-risk vaccinated adults in the community
Health outcomes 3 months and 6 months after molnupiravir treatment for COVID-19 for people at higher risk in the community (PANORAMIC): a randomised controlled trial
Background:
No randomised controlled trials have yet reported on the effectiveness of molnupiravir on longer term outcomes for COVID-19. The PANORAMIC trial found molnupiravir reduced time to recovery in acute COVID-19 over 28 days. We aimed to report the effect of molnupiravir treatment for COVID-19 on wellbeing, severe and persistent symptoms, new infections, health care and social service use, medication use, and time off work at 3 months and 6 months post-randomisation.
Methods:
This study is a follow-up to the main analysis, which was based on the first 28 days of follow-up and has been previously reported. For this multicentre, primary care, open-label, multi-arm, prospective randomised controlled trial conducted in the UK, participants were eligible if aged at least 50 years, or at least 18 years with a comorbidity, and unwell 5 days or less with confirmed COVID-19 in the community. Participants were randomly assigned to the usual care group or molnupiravir group plus usual care (800 mg twice a day for 5 days), which was stratified by age (<50 years or ≥50 years) and vaccination status (at least one dose: yes or no). The primary outcome was hospitalisation or death (or both) at 28 days; all longer term outcomes were considered to be secondary outcomes and included self-reported ratings of wellness (on a scale of 0–10), experiencing any symptom (fever, cough, shortness of breath, fatigue, muscle ache, nausea and vomiting, diarrhoea, loss of smell or taste, headache, dizziness, abdominal pain, and generally feeling unwell) rated as severe (moderately bad or major problem) or persistent, any health and social care use, health-related quality of life (measured by the EQ-5D-5L), time off work or school, new infections, and hospitalisation.
Findings:
Between Dec 8, 2021, and April 27, 2022, 25 783 participants were randomly assigned to the molnupiravir plus usual care group (n=12 821) or usual care group (n=12 962). Long-term follow-up data were available for 23 008 (89·2%) of 25 784 participants with 11 778 (91·9%) of 12 821 participants in the molnupiravir plus usual care group and 11 230 (86·6%) of 12 963 in the usual care group. 22 806 (99·1%) of 23 008 had at least one previous dose of a SARS-CoV-2 vaccine. Any severe (3 months: adjusted risk difference –1·6% [–2·6% to –0·6%]; probability superiority [p(sup)]>0·99; number needed to treat [NNT] 62·5; 6 months: –1·9% [–2·9% to –0·9%]; p(sup)>0·99, NNT 52·6) or persistent symptoms (3 months: adjusted risk difference –2·1% [–2·9% to –1·5%]; p(sup)>0·99; NNT 47·6; 6 months: –2·5% [–3·3% to –1·6%]; p(sup)>0·99; NNT 40) were reduced in severity, and health-related quality of life (measured by the EQ-5D-5L) improved in the molnupiravir plus usual care group at 3 months and 6 months (3 months: adjusted mean difference 1·08 [0·65 to 1·53]; p(sup)>0·99; 6 months: 1·09 [0·63 to 1·55]; p(sup)>0·99). Ratings of wellness (3 months: adjusted mean difference 0·15 (0·11 to 0·19); p(sup)>0·99; 6 months: 0·12 (0·07 to 0·16); p(sup)>0·99), experiencing any more severe symptom (3 months; adjusted risk difference –1·6% [–2·6% to –0·6%]; p(sup)=0·99; 6 months: –1·9% [–2·9% to –0·9%]; p(sup)>0·99), and health-care use (3 months: adjusted risk difference –1·4% [–2·3% to –0·4%]; p(sup)>0·99; NNT 71·4; 6 months: –0·5% [–1·5% to 0·4%]; p(sup)>0·99; NNT 200) had high probabilities of superiority with molnupiravir treatment. There were significant differences in persistence of any symptom (910 [8·9%] of 10 190 vs 1027 [11%] of 9332, NNT 67) at 6 months, and reported time off work at 3 months (2017 [17·9%] of 11 274 vs 2385 [22·4%] of 10 628) and 6 months (460 [4·4%] of 10 562 vs 527 [5·4%] of 9846; NNT 100). There were no differences in hospitalisations at long-term follow-up.
Interpretation:
In a vaccinated population, people treated with molnupiravir for acute COVID-19 felt better, experienced fewer and less severe COVID-19 associated symptoms, accessed health care less often, and took less time off work at 6 months. However, the absolute differences in this open-label design are small with high numbers needed to treat