15 research outputs found

    Modeling macroroughness contribution to fish habitat-suitability curves

    Get PDF
    Improved water management strategies necessitate a solid understanding of environmental impacts associated with various flow release policies. Habitat suitability models use hydrodynamic simulations to generate weighted usable area curves, which are useful in characterizing the ecological suitability of flow release rules. However, these models are not conveniently run to resolve the hydrodynamics at the smaller scales associated with macroroughness elements (e.g., individual stones), which produce wakes that contribute significantly to habitat suitability by serving as shelter zones where fishes can rest and feed. In this study, we propose a robust environmental indicator that considers the habitat generated by the wakes downstream of stones and can thus be used to assess the environmental efficiency of flow release rules for impounded streams. We develop an analytical solution to approximate the wake areas behind macroroughness elements, and the statistical distribution of wake areas is then found using the derived distribution approach. To illustrate the concept, we apply our theory to four exemplary river streams with dispersed stones having different statistical diameter size distributions, some of which allow for an analytical expression of the weighted usable area. We additionally investigate the impact of spatiotemporal changes in stone size distributions on the usable area and the consequent threshold flows. Finally, we include the proposed environmental indicator to solve a multiobjective reservoir optimization problem. This exemplifies its practical use and allows stakeholders to find the most favorable operational rules depending on the macroroughness characteristics of the impounded stream

    Momentum balance of katabatic flow on steep slopes covered with short vegetation

    Get PDF
    Katabatic flows over alpine mountainous terrain differ from their forested or bare slope counterparts due to the presence of well-ventilated, short vegetation. The impact of a grass canopy and larger-scale pressure perturbations on the one-dimensional mean momentum balance is explored via theory and field measurements. The model presented here reproduces the measured velocity jet shape and turbulent flux gradients. These two features imply that even when Monin-Obuhkov similarity theory breaks down, its use for a stability adjusted mixing length remains effective to first order. Results reveal that outer layer pressure effects can be significant under low-speed wind conditions at the top of the thin katabatic layer when larger variations in the wind direction are observed. An analytical expression to estimate the jet height, which can be utilized in large-scale weather prediction models, shows the importance of including canopy effects for the thin katabatic flow region above the vegetation

    Controls on the diurnal streamflow cycles in two subbasins of an alpine headwater catchment

    Get PDF
    In high-altitude alpine catchments, diurnal streamflow cycles are typically dominated by snowmelt or ice melt. Evapotranspiration-induced diurnal streamflow cycles are less observed in these catchments but might happen simultaneously. During a field campaign in the summer 2012 in an alpine catchment in the Swiss Alps (Val Ferret catchment, 20.4 km2, glaciarized area: 2%), we observed a transition in the early season from a snowmelt to an evapotranspiration-induced diurnal streamflow cycle in one of two monitored subbasins. The two different cycles were of comparable amplitudes and the transition happened within a time span of several days. In the second monitored subbasin, we observed an ice melt-dominated diurnal cycle during the entire season due to the presence of a small glacier. Comparisons between ice melt and evapotranspiration cycles showed that the two processes were happening at the same times of day but with a different sign and a different shape. The amplitude of the ice melt cycle decreased exponentially during the season and was larger than the amplitude of the evapotranspiration cycle which was relatively constant during the season. Our study suggests that an evapotranspiration-dominated diurnal streamflow cycle could damp the ice melt-dominated diurnal streamflow cycle. The two types of diurnal streamflow cycles were separated using a method based on the identification of the active riparian area and measurement of evapotranspiration

    Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow

    No full text
    We develop several critical concepts that should be considered when interpreting, modelling and designing future experiments for flows over sloping terrain. Vertical buoyancy fluxes in katabatic flows can be positive and a source of turbulent kinetic energy (TKE) despite the statically stable, thermal stratification that drives these flows. This phenomenon occurs when the ratio of along-slope to slope-normal kinematic heat fluxes is greater than the cotangent of the slope angle, suggesting a critical value of slope-angle steepness found in earlier studies. We provide field-data-based evidence that the along-slope heat flux may dominate the variables in this inequality, and therefore in generating buoyant TKE production or suppression over a steep slope. These data show the along-slope heat flux can be more variable and significantly larger in magnitude than the slope-normal component. The gradient Richardson number does not include the effects of the along-slope buoyancy; furthermore, none of the canonical stability parameters can properly reflect the TKE redistribution from turbulent transport divergence and the sink of TKE in cases of counter-gradient momentum fluxes, which we frequently observe near the peak of the katabatic jet. In such cases, canonical stability parameters inadequately represent the physical mechanisms associated with stability. These results have broad implications related to accurately modelling turbulence and surface exchanges over sloping terrain and illustrate the need to more thoroughly investigate the along-slope heat flux and its drivers, the meaning and definitions of stability, and the effects of non-local turbulent transport

    A Local Similarity Function for Katabatic Flows Derived From Field Observations Over Steep- and Shallow-Angled Slopes

    Get PDF
    Katabatic flows are notoriously difficult to model for a variety of reasons. Notably, the assumptions underpinning Monin-Obukhov similarity theory (MOST) are inherently violated by the sloping terrain, causing the traditional flux-gradient relations used in numerical weather prediction models to break down. Focusing on turbulent momentum transport, we show significant flux divergence, further violating MOST assumptions, and that the traditional parameterizations fail even with local scaling for katabatic flow. In response, we propose a modified local-MOST stability-correction function, informed by near-surface turbulence observations collected over two mountainous slopes with inclination angles (α) of α ≈ 7.8° and α ≈ 35.5°. The proposed relation includes a directly, making data from both slopes collapse with unprecedented agreement. RMSE between measured fluxes and estimates from the proposed and Businger et al. (1971, https://doi.org/10.1175/1520-0469(1971)028\u3c0181:FPRITA\u3e2.0.CO;2) relations show significant improvement. Results can be used to inform future development of wall-model and turbulence closures in the katabatic flow layer

    Atmospheric boundary layers in complex terrain and over ice, snow and vegetated surfaces

    No full text
    Recent field campaigns held at the Val Ferret watershed in 2012 provided turbulent measurements in the atmospheric surface layer with and without snow cover. The turbulent kinetic energy (TKE) over the snow was reduced in comparison to the measurements obtained over bare surface. The “smoothing” of the surface by snow probably has a small role to play in the decrease of the TKE but the importance of the snow cover itself still has to be determined. Recent measurements obtained during the Plaine Morte 2013 field campaign using sonic anemometers are analysed. We discuss how the snowpack impacts the atmospheric turbulence under various snowpack conditions
    corecore