431 research outputs found

    Rock Density Lab

    Get PDF
    In this activity, students measure the specific gravity of rocks and equate it to density. There are instructions for modifying the balance to be able to weigh the rocks in water. There are also several suggestions about how to use the data and the kinds of graphs that can be made. The site has a list of materials, detailed instructions, and examples of charts and graphs. Educational levels: High school, Middle school

    Stream Chemistry Monitoring

    Get PDF
    This site contains generic instructions for conducting water quality testing. Several different tests are described that can be conducted over short or long periods of time. The site explains how to gather and treat the data and has suggested questions for the students to see if they can properly analyze the data. The objectives are to familiarize students with real-world gathering of scientific data and data-gathering techniques, to give students practice with basic statistical analysis and graphing, and to give them a better idea of the nature of analysis, data collection, interpretation, and presentation. Educational levels: High school, Middle school

    Bacterial Residues in Coprolite of Herbivorous Dinosaurs: Role of Bacteria in Mineralization of Feces

    Get PDF
    The Cretaceous Two Medicine Formation of northwestern Montana has yielded blocky, calcareous coprolites that contain abundant fragments of conifer wood and were produced by large herbivorous dinosaurs. The coprolites are generally dark gray to black in color due to a dark substance confined chiefly within what originally were the capillaries of tracheid and ray cells of xylem. This substance is a kerogen which consists in part of thin-walled vesicles 0.1-1.3 µm in diameter. Pyrolysis products of this kerogen are diagnostic of a bacterial origin with a possible contribution from terrestrial plants. The vesicular component is interpreted as the residue of bacterial cells, whereas a second filamentous component, closely associated with the vesicles, may be the residue of an extracellular binding material, such as glycocalyx. At least two episodes of calcification of the coprolite are recognized by manganous cathodoluminescence. The earlier of these infilled the capillary channels of the conifer fragments. Wood cell walls, voids, cracks, and small burrows were filled during the later episode. Microprobe data confirm these results and show that phosphate is sequestered in the capillaries. These observations suggest that bacteria within the capillaries induced initial mineralization of the coprolite, and, in so doing, created barriers that protected organic residues from subsequent destruction. Early onset of mineralization is consistent with the degree of preservation of woody xylem found in the coprolites

    High Grade Acadian Regional Metamorphism in South-Central Massachusetts

    Get PDF
    Guidebook for field trips in Connecticut and south central Massachusetts: New England Intercollegiate Geological Conference 74th annual meeting, University of Connecticut, Storrs Connecticut , October 2 and 3, 1982: Trip P-

    Many ways to make darker flies: Intra-and interspecific variation in Drosophila body pigmentation components

    Get PDF
    Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco-evo- devo model, into distinct measurable traits related to color and color pattern. We investigate intra-and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show t hat evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.info:eu-repo/semantics/publishedVersio

    Novel substrates as sources of ancient DNA: : prospects and hurdles

    Get PDF
    Following the discovery in the late 1980s that hard tissues such as bones and teeth preserve genetic information, the field of ancient DNA analysis has typically concentrated upon these substrates. The onset of high-throughput sequencing, combined with optimized DNA recovery methods, has enabled the analysis of a myriad of ancient species and specimens worldwide, dating back to the Middle Pleistocene. Despite the growing sophistication of analytical techniques, the genetic analysis of substrates other than bone and dentine remain comparatively “novel”. Here, we review analyses of other biological substrates which offer great potential for elucidating phylogenetic relationships, paleoenvironments, and microbial ecosystems including (1) archaeological artifacts and ecofacts; (2) calcified and/or mineralized biological deposits; and (3) biological and cultural archives. We conclude that there is a pressing need for more refined models of DNA preservation and bespoke tools for DNA extraction and analysis to authenticate and maximize the utility of the data obtained. With such tools in place the potential for neglected or underexploited substrates to provide a unique insight into phylogenetics, microbial evolution and evolutionary processes will be realized

    Female Drosophila melanogaster Gene Expression and Mate Choice: The X Chromosome Harbours Candidate Genes Underlying Sexual Isolation

    Get PDF
    Background: The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown. Methods and Findings: We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean) versus less (Cosmopolitan strain) preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations. Conclusion: Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized
    corecore