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Abstract

Body pigmentation is an evolutionarily diversified and ecologically relevant trait with
substantial variation within and between species, and important roles in animal sur-
vival and reproduction. Insect pigmentation, in particular, provides some of the most
compelling examples of adaptive evolution, including its ecological significance and
genetic bases. Pigmentation includes multiple aspects of color and color pattern that
may vary more or less independently, and can be under different selective pressures.
We decompose Drosophila thorax and abdominal pigmentation, a valuable eco-evo-
devo model, into distinct measurable traits related to color and color pattern. We
investigate intra- and interspecific variation for those traits and assess its different
sources. For each body part, we measured overall darkness, as well as four other
pigmentation properties distinguishing between background color and color of the
darker pattern elements that decorate each body part. By focusing on two stand-
ard D. melanogaster laboratory populations, we show that pigmentation components
vary and covary in distinct manners depending on sex, genetic background, and tem-
perature during development. Studying three natural populations of D. melanogaster
along a latitudinal cline and five other Drosophila species, we then show that evo-
lution of lighter or darker bodies can be achieved by changing distinct component
traits. Our results paint a much more complex picture of body pigmentation varia-
tion than previous studies could uncover, including patterns of sexual dimorphism,
thermal plasticity, and interspecific diversity. These findings underscore the value of
detailed quantitative phenotyping and analysis of different sources of variation for a
better understanding of phenotypic variation and diversification, and the ecological

pressures and genetic mechanisms underlying them.
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1 | INTRODUCTION

Diversity in body coloration provides some of the most compel-
ling examples of adaptive evolution. Insect coloration, in partic-
ular, includes text book cases such as industrial melanism (e.g.,
Cook & Saccheri, 2013; van't Hof et al., 2011), mimicry (e.g., Mallet
& Joron, 1999; Nadeau, 2016), and clinal variation (e.g., Bastide
et al., 2014, Endler et al., 2016; Telonis-Scott et al., 2011; Wittkopp
et al., 2011). Studies in different species have illustrated the eco-
logical significance of variation in body pigmentation, including
visual communication between individuals of the same (e.g., mate
attraction and mate choice; e.g., Guillermo-Ferreira et al., 2014,
Wiernasz, 1995) or of different species (e.g., predator avoidance
via camouflage or aposematism; e.g., van Bergen & Beldade, 2019;
Futahashi & Fujiwara, 2008; Reichstein et al., 1968), as well as
thermoregulation (e.g., Rajpurohit et al., 2008; Sibilia et al., 2018).
Moreover, insect pigmentation is tightly associated with various
other traits that are closely related to fitness (see Mckinnon &
Pierotti, 2010; Wittkopp & Beldade, 2009). The diversity of insect
pigmentation across species, populations, sexes, and individuals of
the same sex has been the focus of many eco-evo-devo studies,
providing key insight into the genetic basis of phenotypic varia-
tion (e.g., Futahashi & Fujiwara, 2008; Massey & Wittkopp, 2016;
Miyagi et al., 2015; Orteu & Jiggins, 2020; Pool & Aquadro, 2007;
Zhang et al., 2017) and exploring important phenomena such
as developmental plasticity (e.g., Monteiro et al., 2015; Shearer
et al., 2016; Solensky & Larkin, 2003), the origin of novelty (e.g.,
Shirai et al., 2012; Vargas-Lowman et al., 2019), and evolutionary
constraints (e.g., Allen et al., 2008; Beldade, Brakefield, et al., 2002;
Beldade, Koops, et al., 2002).

Variation in body pigmentation can arise from differences in color
and/or in the spatial arrangement of colors into specific patterns.
These two aspects are believed to rely on largely distinct classes of
genes involved in pigmentation development: those encoding the
enzymes responsible for pigment synthesis, and those encoding the
transcription factors regulating the expression of those enzymes
at the appropriate time and location (see True, 2003; Wittkopp &
Beldade, 2009; Wittkopp et al., 2003). Changes in genes associated
with eachof these stepscanresultinchangesinpigmentationbetween
individuals and between body parts (e.g., Wittkopp et al., 2002). In
this respect, body pigmentation can be thought of as a multidimen-
sional trait, made up of several components representing aspects of
actual color and of color pattern, which might vary between body
parts and develop and evolve more or less independently. This has
been explored in studies focusing on specific color pattern elements,
including on butterfly wings (reviews in Beldade & Peralta, 2017,
Monteiro, 2015; Nijhout, 2001), as well as on fly wings and abdo-
mens (e.g., Jeong et al., 2006; Werner et al., 2010). Yet, rarely do
studies of body pigmentation variation combine quantitative analysis
of multiple color and color pattern traits.

Studies of Drosophila body and wing pigmentation have provided
very valuable insight about the genetic and environmental bases of

variation between species, populations of the same species, and
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individuals of the same population (e.g., Gibert et al., 2007; Hollocher
et al., 2000; Massey & Wittkopp, 2016; Pool & Aquadro, 2007;
Wittkopp et al., 2003). These studies characterized effects of envi-
ronmental factors, such as nutrition (e.g., Shakhmantsir et al., 2014)
and temperature (e.g., David et al., 1990), as well as allelic variants
of both subtle (e.g., Bastide et al., 2013) and large phenotypic ef-
fect (e.g., Carbone et al., 2005). Variation in Drosophila pigmentation
has been associated with clinal and seasonal variation in desiccation
resistance, thermoregulation, and UV protection (e.g., Matute &
Harris, 2013; Parkash et al., 2014; Rajpurohit et al., 2008) and shown
to correlate with other traits, such as reproductive success, behavior,
and immunity (e.g., Dombeck & Jaenike, 2004; Massey et al., 2019;
Takahashi, 2013). While studies of Drosophila pigmentation have in-
cluded focus on different body parts (e.g., trident on thorax, e.g.,
David et al., 1985; melanic patches on wings, e.g., True et al., 1999;
dark bands of abdominal segments, e.g., Dembeck et al., 2015),
these studies typically analyze single and often qualitative proper-
ties of pigmentation (but see, e.g., Saleh Ziabari & Shingleton, 2017).
Indeed, the detail in quantitative phenotyping of Drosophila pigmen-
tation does not match the sophistication of the analysis of its genetic
and developmental bases. This is not unique to Drosophila pigmen-
tation; the need for more attention to be given to phenotyping has
been called for repeatedly (Deans et al., 2015; Gerlai, 2002; Houle
et al., 2010; Kiihl & Burghardt, 2013; Laughlin & Messier, 2015).
Here, we provide a detailed analysis of patterns and sources of
intra- and interspecific variation in body pigmentation in Drosophila,
considering aspects of both color and color pattern. For that, we
quantify five traits encompassing aspects of color and color pattern
of abdomen and thorax pigmentation in Drosophila adults. We inves-
tigate how each of these pigmentation components and the associ-
ations between them differ between genotypes and developmental
temperatures, within and across species. We show that different
pigmentation components can vary rather independently and that
fly bodies can be made lighter or darker by changing distinct pig-
mentation components. We discuss our results in the context of the

potential for evolutionary diversification of pigmentation.

2 | MATERIAL AND METHODS
2.1 | Fly stocks and experimental design

In this study, we used a total of 23 Drosophila fly stocks: two D. mela-
nogaster laboratory strains CantonS (CanS) and OregonR (OreR), five
different isogenic lines of D. melanogaster from each of three geo-
graphical locations (i.e., Finland, Austria, and Spain), two strains of
D. simulans (D.sim A and D.sim B), one stock of D. malerkotliana, one
stock of D. repleta, one stock of D. mojavensis baja, and one stock
of D. mojavensis mojavensis. D. melanogaster strains (CanS and OreR)
and Drosophila species D. simulans, D. malerkotliana, D. repleta, D.
mojavensis baja, and D. mojavensis mojavensis were obtained from C.
Mirth's laboratory. D. melanogaster populations from Finland (Akaa;
61.1, 23.52; collected in July 2015), Austria (Mauternbach; 48.38,
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15.57; collected in July 2016), and Spain (Tomelloso; 39.16, 3.02; col-
lected in September 2015) were obtained from E. Sucena's labora-
tory and collected by members of the European Drosophila Population
Genomics Consortium (DrosEu; http://droseu.net). From the species
used in this study, D. melanogaster, D. simulans, and D. malerkotliana
belong to the melanogaster group, which originally inhabited tropi-
cal climates, though they have become cosmopolitan species. In con-
trast, D. mojavensis and D. repleta belong to the repleta group, which
inhabits desert climates. All stocks were maintained in molasses
food (45 g molasses, 75 g sugar, 70 g cornmeal, 20 g yeast extract,
10 g agar, 1,100 ml water, and 25 ml of Nipagin 10%). All stocks were
kept at 25°C, 12:12-hr light-dark cycles. For the experiments, we
performed overnight egg-laying from ~20 females of each stock in
vials with ad libitum molasses food. Eggs were then placed at either
17°C or 28°C throughout development. We controlled the popula-
tion density by keeping between 20 and 40 eggs per vial.

For the experiment of the windows of sensitivity for pigmenta-
tion, we exposed developing flies to 17°C or 28°C during one win-
dow of development while they were kept at 23°C for the remaining
stages. We tested four different treatments at 17°C and at 28°C: T
(flies always kept at constant temperature), L (late larval develop-
ment; staging done by using traqueal and mouth hook morphology),
p (only early pupal period; from white pupa to the onset of eye pig-
mentation), P (only late pupal period; from the onset of eye pigmen-
tation until adult eclosion).

2.2 | Phenotyping pigmentation components
Adult flies (8-10 days after eclosion) were placed in 2-ml microcen-
trifuge tubes and frozen in liquid nitrogen. The tubes were shaken

immediately after submersion in liquid nitrogen to remove wings,

legs, and bristles. Headless bodies of flies were then mounted on
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3% agarose in Petri dishes, dorsal side up, and covered with water
to avoid specular reflection of light upon imaging. Images contain-
ing 10-20 flies were collected with a LeicaDMLB2 stereoscope and
a Nikon E400 camera under controlled conditions of illumination
and white-balance adjustment. Images were later processed with a
set of custom-made interactive Mathematica notebooks (Wolfram
Research, Inc., Mathematica, version 10.2, Champaign, IL, 2015) to
extract pigmentation measurements. For this purpose, two tran-
sects were defined on each fly, one in the thorax and one in the
abdomen, using morphological landmarks (as shown in Figure 1). To
minimize image noise, for each pixel position along the transect line
we calculated the mean RGB (red, green, blue) values of the clos-
est five pixels located on a small perpendicular line centered on the
transect. For abdominal transects, when necessary, we removed the
sections corresponding to the membranous tissue that occasionally
is visible between abdominal segments. The few transects that were
drawn over debris particles were excluded from the analysis, as pig-
mentation measurements could not be accurately extracted.

The sequence of averaged RGB pixel values corresponding to
each transect was then used to define each of the five pigmentation
components as follows. For each pixel, we calculated a normalized
darkness value as Dmax-Dbk, where Dmax is the largest possible
Euclidean distance between two colors in the RGB color space (in
this case Dmax = \/5), and Dbk is the distance of the pixel's color
coordinates to the color black (R = 0, G = 0, B = 0). Overall darkness
(Odk) was calculated as the sum of the normalized darkness values
for each pixel divided by the number of pixels in the transect. Taking
the sequence of normalized darkness values along a transect, we es-
timated its two enveloping lines (blue and green lines in Figure 1a)
by calculating the baselines of the original and negated values using
the Statistics-sensitive Non-linear Iterative Peak-clipping (SNIP) algo-
rithm (Ryan et al., 1988). The median line of this envelope (red line

in Figure 1a) was then used to separate the transect pixels into two

() Overall darkness (Odk)
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area f max

... Color (Cbk and Cpa)
: g
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FIGURE 1 Quantitative analysis of body pigmentation. (a) Thorax and abdomen from female of D. melanogaster OreR reared at 17°C
showing the body landmarks used to draw the transects. For each pixel in the transect, we extracted RGB values that are represented in
the RGB plots (cubes on the right side of each transect). By calculating the distance between each of those pixels to the black, we converted
the RGB vectors into two-dimensional information and represented the distance of each pixel (y-axis) from the anterior to the posterior
extremes of the transect (x-axis) (plots on the right side). (b) Diagram showing the different pigmentation traits. Overall darkness (Odk),
difference between lightest and darkest color (Ran), relative length of dark “ornamental” pattern (Pat), color of background (Cbk), and color

of pattern “ornamental” elements (Cpa) (see Materials and Methods)
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clusters, where the pixels above or below this line correspond, re-
spectively, to the pattern element (trident in the thorax and darker
bands in the abdomen) or to the background. Pattern (Pat) was calcu-
lated as the proportion of pixels corresponding to the pattern element
relative to the transect length. Color of the pattern element (Cpa) is
the angle defined in the RGB color space between the best-fitted line
going through the color coordinates of the pixels in the transect that
correspond to the pattern element (trident and/or darker bands) in
the transect and the gray vector (the black to white diagonal in the
RGB color space). Similarly, color of the background (Cbk) was calcu-
lated as the angle between the best-fitted line that goes through the
color coordinates of the background pixels in the transect and the
gray vector. Pixels corresponding to pattern element and/or back-
ground were defined by grouping all RGB values in the transect into
two clusters each containing 95% of the light or dark pixels, respec-
tively. Range (Ran) was calculated as the Euclidean distance between
the median values of the 20 darkest and the 20 lightest pixels along
the transects. The colors represented in Figure 2 correspond to the
mean R, mean G, and mean B values for each strain/species, sex, and
temperature, which were calculated from Cpa for color of pattern el-

ements and from Cbk for color of the background, respectively.

2.3 | Statistical analyses

All analyses were conducted in R v 3.6.2 (R Core Team, 2019), using
the following R packages: tidyr (Wickham & Henry, 2020) to arrange
datasets, ggplot2 (Wickham, 2009) to produce plots, Ime4 (Bates
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et al., 2015) and ImerTest (Kuznetsova et al., 2017) to perform lin-
ear mixed-effects models, Hmisc (Harrell et al., 2020) and corrplot
(Taiyun & Viliam, 2017) to compute correlation matrices, and em-
means (Lenth et al., 2018) to perform post hoc pairwise comparisons
between groups. The statistical models described below are given in
package-specific R syntax (shown in italics).

Multivariate multiple regression was performed for the data on
D. melanogaster laboratory populations to test for the effect of strain,
sex, temperature (fixed explanatory variables), and interaction terms
in all pigmentation traits by combining all traits using the cbind func-
tion (model Im(cbind(Odk, Pat, Ran, Cbk, Cpa) ~ Strain * Sex * Temperat
ure)). A similar analysis was performed for the data on D. melanogas-
ter clinal populations testing for the fixed effects and interactions
of location, genotype (i.e., isogenic line; nested within location), and
temperature (model Im(cbind(Odk, Pat, Ran, Cbk, Cpa) ~ Location *
Genotype * Temperature), and for the Drosophila species, testing for
the fixed effects and interactions of species, strain (nested within
species), sex, and temperature (model Im(cbind(Odk, Pat, Ran, Cbk,
Cpa) ~ Species * Species/Strain * Sex * Temperature)), where Strain cor-
responds to the different genetic backgrounds analyzed in D. mela-
nogaster (CanS and OreR) and in D. simulans (D. sim A and D. sim B).

Linear mixed effect models were then used to test for the (fixed)
effects of different explanatory fixed variables (strains, genotypes
or species, sex, and temperature) and their interactions on each of
the pigmentation traits (noted as trait in the model notations below).
Replicate, which corresponds to each independent cohort of flies (for
any given species/genotype/temperature), was included as random

effect in the models (denoted as (1|Replicate) in the R syntax below).

(c)

OregonR Finland

d'Qd'
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FIGURE 2

D. rep
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Intra- and interspecific variation in Drosophila pigmentation. (a) lllustration of a D. melanogaster headless body showing

the dorsal side of the thorax and abdomen and the scheme we used to represent pigmentation traits for thorax (top rounded rectangle)

and abdomen (bottom rounded rectangle). For each of these, the horizontal dashed line separates the color of pattern element (Cpa) and
the color of background (Cbk). These are shown in mean color (RGB values) for same-group individuals, and the height of the dashed line
represents the proportion of the transect that is occupied by pattern versus background (Pat). See more details in Figure 1. (b) Pigmentation
schemes per strain, sex, and temperature in D. melanogaster laboratory populations. (c) Pigmentation schemes in D. melanogaster clinal
populations, showing mean values from the five genotypes (i.e., isogenic lines) per location. (d) Pigmentation schemes in five Drosophila
species with one genetic background per species except D. simulans where two genetic backgrounds (D. sim A and D. sim B) were studied
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FIGURE 3 Quantitative phenotyping of Drosophila pigmentation component traits. For each population, temperature, sex, and body part,
radar plots represent variation for Pat, Ran, Cpa, and Cbk (means; dot plots in Figure S1) and dot plots represent variation for Odk (individual
data points and means). Females/males are shown as solid/dashed lines (radar plots) or closed/empty circles (dot plots), and flies reared at
17°C/28°C are shown in blue/red. (a) D. melanogaster laboratory populations. Results of statistical test for the effect of sex, temperature,
and their interaction on each of the traits are shown in Table A2. Letters in dot plots indicate results of post hoc pairwise comparisons
between groups: different letters when significantly different (p-value <.05 for Tukey's honest significance test). (b) D. melanogaster clinal
populations. For each geographical population, we phenotyped females from five genotypes (i.e., isogenic lines). Results for the effect of
location, genotype, and temperature (and interactions) on the different pigmentation traits are in Table A4. Results of the statistical test
(p-value) for the effect of temperature on each of the traits are shown in plots. (c) Drosophila species. Results of the statistical test for effect
of sex, temperature, and their interaction are in Table A5. Letters in dot plots indicate results of post hoc pairwise comparisons between
groups: different letters when significantly different (p-value <.05 for Tukey's honest significance test)
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For D. melanogaster laboratory strains: model Imer(Trait ~ Sex * Tempe
rature + (1|Replicate)). The same model was used for all Drosophila spe-
cies, except for D. simulans, where we also included the factor Strain
which corresponds to the different genetic backgrounds studied in
this species (D. sim A and D. sim B) (model: Imer(Trait ~ Strain * Sex * Te
mperature + (1|Replicate))). For the clinal populations: model: Imer(Tra
it ~ Location * Location/Genotype * Temperature + (1|Replicate)). For all
the aforementioned mixed models, we used Satterthwaite's method
(via ANOVA function in ImerTest package; Kuznetsova et al., 2017) for
approximating degrees of freedom and estimating F-statistics and p-
values. For the data on the sensitive stages of development, we used
linear effect models to test for the effect and interaction of strain
and thermal regime (model: Im(Trait ~ Strain * Regime)).

We used post hoc pairwise comparisons (Tukey's honest signif-
icant differences) to identify differences between strains, sexes,
temperatures, and/or thermal regimes. Pearson's correlations were
used to check correlations between traits and across temperatures.
We used Holm p-value adjustment method to correct for multiple
comparisons (Holm, 1979).

3 | RESULTS

To investigate patterns and sources of variation in Drosophila body pig-
mentation, we quantified five pigmentation traits that include aspects
of color and color pattern (see Figure 1 and Materials and Methods).
We focused on the dorsal surface of thoraxes and abdomens, char-
acterized for having different types of darker “pattern elements” on
a lighter “background” color: a trident at the center of the thorax and
bands on each segment of the abdomen. For each body part, we ex-
tracted color information along transects running antero-posteriorly
on each body part and quantified a series of pigmentation traits
(Figures 1 and 2a): overall darkness (Odk), the relative length of tran-
sect occupied by the darker “ornamental” pattern (Pat), the actual color
of both background (Cbk) and “ornamental” pattern elements (Cpa),
and the distance in RGB space between the darkest and the lightest
color that corresponds to the range of color variation (Ran). We inves-
tigated how these pigmentation components vary and covary between
sexes and between rearing temperatures in D. melanogaster represent-
ing standard laboratory strains, and natural populations from different
geographical locations, as well as in five additional Drosophila species.
For each dataset (D. melanogaster laboratory strains, D. melanogaster
clinal populations, and Drosophila species), the multivariate multiple
regression analyses showed that pigmentation differed significantly
between strains/genotypes/species, sexes, and temperatures, with ef-
fects that depended on body part (Table A1).

3.1 | Variation in body pigmentation in
D. melanogaster laboratory populations

We reared flies from two common laboratory genetic backgrounds of
D. melanogaster, Oregon R (OreR) and Canton S (CanS), at either 17°C
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or 28°C to assess thermal plasticity and sexual dimorphism in our pig-
mentation traits (Figures 2 and 3, Figure Sla, Table A2). We found
that flies reared at lower temperature were generally darker than
those reared at higher temperature and that males were generally
darker than females (Figures 2b and 3a, Figure S1a), as has been pre-
viously described in D. melanogaster (e.g., Gibert et al., 2009). Yet, we
also found differences between strains and body parts in the extent
and sometimes the direction of both thermal plasticity and sexual di-
morphism for our pigmentation traits (Figures 2b and 3a, Figure S1a,
Table A2), as well as for the correlations between them (Figure 4a).

For overall darkness (Odk; dot plots in Figure 3a), flies reared
at 17°C were generally darker than those from 28°C, with the ex-
ception of CanS males (where differences were not significant in
either body part) and OreR females (where abdomens were darker
in flies from 28°C). The abdomens were lighter in females relative
to males (except for CanS from 17°C), but the thoraxes were lighter
in males relative to females (except for CanS from 28°C and OreR
from 17°C). We also observed differences between sexes and tem-
peratures for the other pigmentation traits (Pat, Ran, Cbk, and Cpa;
radar plots in Figure 3a; dot plots in Figure Sla, Table A2), which
depended on body part. Sexual dimorphism and plasticity were low-
est for traits reflecting actual color (i.e., Cbk and Cpa) (Figure S1a).
While for the thorax, the most striking differences were seen in Ran
(for females between temperatures), for the abdomen they were
seen for Pat (distinguishing females from 28°C from others) and Ran
(extreme for OreR females) (Figure S1a). Variation was only loosely
correlated between traits, with few significant correlations, which
differed between genetic backgrounds, sexes, and rearing tempera-
tures (Figure 4a). Overall, correlations between traits were weaker
across body parts relative to within body parts and in males relative
to females.

For those pigmentation traits found to be thermally plastic (i.e.,
significant differences between individuals reared at different tem-
peratures; cf. Figure Sla, Table A2), we investigated which stages of
development were thermally responsive. To do so, we compared phe-
notypes between individuals (specifically, female abdomens) differing in
temperature only for specific developmental time windows (Figure 4b,
Table A3). We tested nine thermal regimes (or treatments), including
three with constant temperatures (whole development at 17°C, 23°C,
or 28°C, T17,T23, and T28 treatments, respectively) and six where most
of the development took place at 23°C and only one specific stage (ei-
ther late larval, early pupal, or late pupal) took place at 17°C or at 28°C.
Differences between constant temperatures (T17, T23, and T28 treat-
ments) revealed thermal reaction norms, i.e., the representation of phe-
notype as a function of temperature (see Schlichting & Pigliucci, 1998),
of different shapes for different pigmentation components: T23 pheno-
type intermediate between T17 and T28 (Ran in OreR; Figure 4b), equal
to one of the extreme temperatures (Pat; Figure 4b), or more extreme
than both T17 and T28 (Odk; Figure 4b). The period when exposure to
a different temperature significantly affected phenotype also differed
between traits and genetic backgrounds (Figure 4b), showing that traits
and genetic backgrounds differ not only in the extent of thermal plas-

ticity, but also in what developmental stage is thermally responsive.
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FIGURE 4 Covariation and thermal sensitivity of D. melanogaster pigmentation components. (a) Heat map of Pearson's correlation
coefficients for all pigmentation traits in abdomens and thoraxes of CanS (left panels) and OreR (right panels) of flies reared at 17°C or 28°C.
For each matrix, females are in the left corner and males in the right. Positive correlations are shown in purple and negative correlations in
orange. Correlations not statistically significant (after Holm p-value adjustment method for multiple comparisons) are indicated with a cross.
(b) Pigmentation traits (y-axis) in females of two D. melanogaster genetic backgrounds (CanS and OreR) exposed to each of the temperature
regimes during development (x-axis). The thermal regimes codes and corresponding stages that were exposed to either 17°C or 28°C
(instead of the basal temperature of 23°C) were as follows: T (constant temperature), L (late larval development), p (early pupal period), and
P (late pupal period). In each graph, dots represent phenotypes of single individual females, and the horizontal bar is the mean of those
values. The results of the test for differences between strains and thermal regimes on the different plastic traits are shown in Table A3.
Letters indicate results of post hoc pairwise comparisons between groups: different letters when significantly different (p-value <.05 for

Tukey's honest significance test)

3.2 | Body pigmentation differences in
D. melanogaster natural populations and
Drosophila species

We explored patterns of variation in pigmentation components in
wild-caught populations sampled along a latitudinal cline in Europe:
Finland, Austria, and Spain (samples from the DrosEU Consortium;
http://droseu.net/). We quantified pigmentation traits in females
from five genotypes (isofemale lines) established from each of the
three geographical locations, reared at either 17°C or 28°C. The
analysis for each pigmentation component revealed differences be-
tween traits in their response to the various explanatory variables
and their interactions (Figures 2c and 3b, Table A4). Geographical
populations differed in overall darkness (Odk; dot plots in Figure 3b)
and in color (both Cbk and Cpa) for the abdomen, but not the tho-
rax (Figure 5, Figure S2, Table A4). Most pigmentation traits (except

Odk Pat Ran

thorax color; Cpa and Cbk) were thermally plastic, with darker
flies for development at 17°C relative to 28°C (Figures 2c and 3b,
Figure S2). The northern- and southern-most populations (i.e.,
Finland and Spain, respectively) did not necessarily show the most
extreme phenotypes, neither in terms of overall darkness nor in the
extent of plasticity therein (Figure 3b, Figure 5). We also found sig-
nificant differences between isofemale genotypes (and their plastic-
ity) within each geographical location (Figure 3b, Table A4).

Finally, we assessed pigmentation variation in flies from five ad-
ditional Drosophila species (two genetic backgrounds for D. simulans
and one genetic background for all other species or subspecies: D.
malerkotliana, D. repleta, D. mojavensis baja, D. mojavensis mojavensis)
reared at either 17°C or 28°C (Figures 2d and 3c). We found differences
between species in extent and direction of sexual dimorphism and of
thermal plasticity for the different pigmentation traits (Figures 2d and
3¢, Figure S1b, Table A5). For instance, for Odk (dot plots in Figure 3c),

Cbk Cpa

0.764

0.724

0.68+4

0.64+4

0.554

0.504

0.454

0.404

Population

Finland

0.75

0.734

Estimated marginal means

0.714

0.694

0.401

Austria
Spain

0.454

0.404

0.354

0.304

17°C 28°C 17°C 28°C 17°C

28°C 17°C 28°C 17°C 28°C

Temperature

FIGURE 5 Effects of temperature on pigmentation traits in D. melanogaster European populations. Interaction plot showing the
estimated marginal means and confidence intervals of all pigmentation traits based on fitted model Imer(Trait ~ Location * Location/

Genotype * Temperature + (1|Replicate))
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D. malerkotliana showed no differences between temperatures and
clear differences between sexes, while D. simulans had very high ther-
mal plasticity but reduced sexual dimorphism (no differences between
females and males reared at 17°C). For the other pigmentation traits
(radar plots in Figure 3c and dot plots in Figure S1b), larger differences
between sexes and/or temperatures were observed for Pat and/or
Ran and less for actual colors (Cpa and Cbk).

4 | DISCUSSION

We decomposed Drosophila body pigmentation into different quan-
titative traits, including overall darkness (Odk), and traits reflecting
properties of color and color pattern (Pat, Ran, Cbk, and Cpa) of both
thoraxes and abdomens (Figure 1). We showed differences in trait
values, as well as in the extent and direction of thermal plasticity
and of sexual dimorphism, for laboratory and natural populations of
D. melanogaster and several Drosophila species (Figures 2, 3, and 5).
Different traits, corresponding to different properties of body pig-
mentation, behaved in a largely independent manner, which was also
reflected in low levels of correlations between traits and in differ-
ences in the period of development during which traits are thermally
responsive (Figure 4).

Drosophila pigmentation has been the focus of various stud-
ies exploring its ecology, development, and evolution (e.g., Gibert
et al., 2017; Kopp et al.,, 2000; Matute & Harris, 2013; Shearer
et al., 2016; Williams et al., 2008). This has provided great insight
about the genetic basis and ecological significance of variation,
across temporally (e.g., seasonal variation) and geographically
(e.g., clinal variation) distinct populations (e.g., Parkash et al.,, n.d.;
Hollocher et al., 2000b; Rajpurohit et al., 2008), as well as across spe-
cies (Hollocher et al., 2000a, 2000b). Many of those studies focused
on specific pigmentation elements in particular species and often
used qualitative assessments of pigmentation variation or pres-
ence/absence of specific pattern elements (e.g., David et al., 2002;
Hollocher et al., 2000). In D. melanogaster, for instance, most work
has focused on abdominal pigmentation and specifically on the
width of the dark bands of the abdominal segments, which is sex-
ually dimorphic (males are generally darker than females; e.g., Kopp
et al., 2000) and thermally plastic (flies from lower developmental
temperatures are generally darker than flies from higher develop-
mental temperatures; e.g., David et al., 1990; Gibert et al., 2007,
2009). Our analysis, quantifying different properties, including ac-
tual color, of both abdomen and thorax pigmentation in D. melano-
gaster and other Drosophila species, revealed a more complex picture
of variation in body pigmentation. We did not, for example, always
find that males were darker than females or that flies reared at lower
temperatures were darker than those from higher temperatures.
Rather, we found trait specificities in how pigmentation varied be-
tween sexes and between developmental temperatures. This was
true not only for overall darkness (Odk) of the abdomen, the trait
that should be more similar to previous characterizations of abdom-

inal pigmentation (e.g., David et al., 1990; Hollocher et al., 2000a),

but also for other properties of body pigmentation, including actual
color of background and pattern elements (i.e., abdominal bands and
thoracic trident), which had not been investigated before. Moreover,
we also showed that pigmentation components, as well as sexual di-
morphism and thermal plasticity therein, vary greatly between spe-
cies, genotypes, and body parts. The mechanisms underlying such
intra- and interspecific variation in different traits, as well as the
trait-specific responses to temperature, remain to be explored and
might involve differences in the environmental sensitivities of the
regulatory regions (e.g., enhancers) controlling pigmentation-related
genes (e.g., De Castro et al., 2018).

Our results also show only weak correlations between traits,
which differ between sexes and with rearing temperatures
(Figure 4a). Environmental effects on trait associations have been
described previously; for instance, cold temperature triggered a
shift in the sign of the correlation between body size and longev-
ity in D. melanogaster (Norry & Loeschcke, 2002). Differing cor-
relations between body parts (or regions within a body part) have
also been identified for D. melanogaster pigmentation (e.g., Bastide
et al., 2014; Gibert et al., 2000), with the extent of genetic correla-
tions decreasing with increasing distance between body segments
(Gibert et al., 2000). Ultimately, the dependency of trait associations
on genetic and environmental factors has the potential to influence
adaptation (e.g., Manenti et al., 2016; Marquez & Knowles, 2007),
as evolutionary change can result from both direct and correlated
responses to selection (e.g., Rajpurohit & Gibbs, 2012). Altogether,
our results suggest a large degree of developmental and evolution-
ary independence between pigmentation components, which could
facilitate the diversification of body coloration in Drosophila. This is
also apparent in that we find differences between traits in the extent
of thermal plasticity and sexual dimorphism (Figures 2 and 3), as well
as in which period during development temperature affects adult
phenotype (Figure 4b).

Studies exploring the ecological conditions driving the evolution
of melanism in Drosophila have documented correlations between
body pigmentation and several eco-geographic variables (e.g., lat-
itude, altitude, temperature, humidity) (e.g., Gibert et al., 2016;
Rajpurohit et al., 2008; Shearer et al., 2016). Clinal variation in
pigmentation has been shown for thoracic trident (e.g., David
et al., 1985; Telonis-Scott et al., 2011) and for abdominal pigmen-
tation (e.g., Das, 2009; Pool & Aquadro, 2007). Generally, darker
phenotypes in colder environments (e.g., at high latitudes or alti-
tudes) have been hypothesized to allow flies to better absorb solar
radiation (c.f. thermal budget or thermal melanism hypothesis;
Clusella-Trullas et al., 2008; Trullas et al., 2007), to increase desic-
cation resistance (e.g., Parkash et al., 2008), and/or to provide pro-
tection against UV radiation (e.g., Bastide et al., 2014). Plasticity, on
the other hand, is expected to be greater in environments that are
more variable (Lande, 2014), such as those with larger seasonal fluc-
tuations, often occurring at higher latitudes. However, our analysis
of the pigmentation patterns from D. melanogaster populations col-
lected along a European latitude cline (Finland, Austria, Spain) did

not always revealed darker pigmentation nor higher plasticity in the
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northern-most population (Finland). This may reflect that other envi-
ronmental parameters and ecological conditions—not considered in
our study—could account for the differences between populations
in the pigmentation components. It is also possible that having only
three populations from three latitudes may be limiting our assess-
ment of latitudinal patterns in pigmentation and plasticity therein.

In terms of a function in thermoregulation favoring darker flies
in cooler environments (David et al., 1985; Hollocher et al., 2000a;
Matute & Harris, 2013; Shearer et al., 2016; Wittkopp et al., 2011),
we could expect our trait overall darkness (Odk) to be the most rele-
vant trait. Our analyses revealed that flies can become overall darker
(higher Odk) by changing actual colors of background or of orna-
mental elements (Cbk and Cpa, respectively) or the proportion of
the abdomen/thorax length covered with the darker bands/trident
(Pat). For instance, males of CanS reared at 17°C and 28°C show the
same overall darkness (Odk), but differ in what pigmentation compo-
nents make that up; Odk is mostly determined by color components
at 17°C and by color pattern components at 28°C (i.e., Cpa and Cbk
are lower, while Pat and Ran are higher at 17°C than at 28°C). It is un-
clear whether these traits are mere components of the overall body
darkness (Odk) or can themselves be under direct natural selection.

Variation in pigmentation between body parts, individuals, pop-
ulations, and species can be caused by differences in actual color
and/or in how colors are spatially organized to make up color pat-
terns (Nijhout, 2010; Wittkopp & Beldade, 2009). However, seldom
do studies of animal pigmentation consider and quantify distinct
pigmentation component traits, and the extent to which they might
be differently affected by genetic and/or environmental factors, and
might develop and evolve more or less independently from each
other. The increased attention to studying the mechanisms under-
lying phenotypic variation resulted in great detail and sophistication
in the characterization of its genetic underpinnings. However, the
detail in describing and quantifying phenotypes has lagged behind.
The lack of quantitative methods for phenotyping (see Gerlai, 2002;
Houle et al., 2010) can result in an oversimplification of complex
phenotypes, dismissing that those phenotypes are often made up
of distinct component traits that can respond to internal and exter-
nal factors in different manners (e.g., Mateus et al., 2014; Vrieling
et al., 1994). We attempted to provide a better resolution of varia-
tion in Drosophila body color, a visually compelling example of adap-
tive evolution. Combining it with existing genetic resources and with
access to natural variation can provide a deeper resolution of the
patterns and processes underlying phenotypic variation, within and
between species.
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TABLE A3 Windows of sensitivity for

pigmentation plasticity in D. melanogaster Df Sum Sq Mean Sq AEI BT

Pat Strain 1 0.08 0.08 17.32 4.09E-05
Regime 8 1.07 0.13 28.65 <2.2e-16
Strain:Regime 8 0.17 0.02 4.42 4.40E-05
Residuals 312 1.46 0.00

Odk Strain 1 0.00 0.00 1.02 3.13E-01
Regime 8 1.25 0.16 40.31 <2.2e-16
Strain:Regime 8 0.22 0.03 6.96 1.63E-08
Residuals 347 1.35 0.00

Ran Strain 1 1.73 1.73 101.40 <2.2e-16
Regime 8 4.94 0.62 36.20 <2.2e-16
Strain:Regime 8 0.45 0.06 3.33 1.11E-03
Residuals 347 5.92 0.02

Cbk Strain 1 0.01 0.01 3.93 4.82E-02
Regime 8 0.20 0.02 17.24 <2.2e-16
Strain:Regime 8 0.10 0.01 8.98 3.32E-11
Residuals 347 0.49 0.00

Cpa Strain 1 0.09 0.09 26.16 5.22E-07
Regime 8 0.63 0.08 22.36 <2.2e-16
Strain:Regime 8 0.17 0.02 6.15 2.00E-07
Residuals 347 1.23 0.00

Note: Results of analysis of variance for the effect and interaction of strain and thermal regime on
the different pigmentation traits per body part (model: Im(Trait ~ Strain*Regime)).
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