521 research outputs found

    The barriers to and enablers of providing reasonably adjusted health services to people with intellectual disabilities in acute hospitals: evidence from a mixed-methods study.

    Get PDF
    OBJECTIVE: To identify the factors that promote and compromise the implementation of reasonably adjusted healthcare services for patients with intellectual disabilities in acute National Health Service (NHS) hospitals. DESIGN: A mixed-methods study involving interviews, questionnaires and participant observation (July 2011-March 2013). SETTING: Six acute NHS hospital trusts in England. METHODS: Reasonable adjustments for people with intellectual disabilities were identified through the literature. Data were collected on implementation and staff understanding of these adjustments. RESULTS: Data collected included staff questionnaires (n=990), staff interviews (n=68), interviews with adults with intellectual disabilities (n=33), questionnaires (n=88) and interviews (n=37) with carers of patients with intellectual disabilities, and expert panel discussions (n=42). Hospital strategies that supported implementation of reasonable adjustments did not reliably translate into consistent provision of such adjustments. Good practice often depended on the knowledge, understanding and flexibility of individual staff and teams, leading to the delivery of reasonable adjustments being haphazard throughout the organisation. Major barriers included: lack of effective systems for identifying and flagging patients with intellectual disabilities, lack of staff understanding of the reasonable adjustments that may be needed, lack of clear lines of responsibility and accountability for implementing reasonable adjustments, and lack of allocation of additional funding and resources. Key enablers were the Intellectual Disability Liaison Nurse and the ward manager. CONCLUSIONS: The evidence suggests that ward culture, staff attitudes and staff knowledge are crucial in ensuring that hospital services are accessible to vulnerable patients. The authors suggest that flagging the need for specific reasonable adjustments, rather than the vulnerable condition itself, may address some of the barriers. Further research is recommended that describes and quantifies the most frequently needed reasonable adjustments within the hospital pathways of vulnerable patient groups, and the most effective organisational infrastructure required to guarantee their use, together with resource implications

    "Because of His Intellectual Disability, He Couldn't Cope." Is Euthanasia the Answer?

    Get PDF
    In 2018, the authors published their analysis of nine online case reports by the Euthanasia Review Committee in the Netherlands, involving people with intellectual disability and/or autism spectrum disorder who were given euthanasia. In this commentary, they reflect further on the challenges of assessing “unbearable suffering without prospect of improvement,” which is one of the Dutch legal due care criteria. Two more recent case reports are presented in detail, where doctors struggled to assess and sometimes came to divergent conclusions. In both cases, limitations resulting from the intellectual disability and autism spectrum disorder were seen by physicians as causes of unbearable suffering, leading them to agreeing to the patient's euthanasia request. The authors discuss their concern about the implications of accepting the effects of lifelong disability as reasons for euthanasia, not only for individuals but for society as a whole

    The Experiences of Staff Who Support People with Intellectual Disability on Issues About Death, Dying, and Bereavement:a metasynthesis

    Get PDF
    Background: Historically, people with intellectual disabilities have tended to be excluded from knowing about death, dying, and bereavement. Staff in intellectual disability services can play a valuable role in improving understanding of these issues in those they support. This qualitative metasynthesis aimed to understand the experiences of staff supporting adults with intellectual disabilities with issues of death, dying, and bereavement. Method: Thirteen papers were identified following a systematic review of six databases. Results: Three themes were developed following a lines-of-argument synthesis: (1) Talking about death is hard: Negotiating the uncertainty in death, dying, and bereavement; (2) The commitment to promoting a “good death”; and (3) The grief behind the professional mask. “A cautious silence: The taboo of death,” was an overarching theme. Conclusions: A more open culture around issues of death, dying, and bereavement in intellectual disability settings is essential and could be promoted through staff training and support

    Contact Force and Scanning Velocity during Active Roughness Perception

    Get PDF
    Haptic perception is bidirectionally related to exploratory movements, which means that exploration influences perception, but perception also influences exploration. We can optimize or change exploratory movements according to the perception and/or the task, consciously or unconsciously. This paper presents a psychophysical experiment on active roughness perception to investigate movement changes as the haptic task changes. Exerted normal force and scanning velocity are measured in different perceptual tasks (discrimination or identification) using rough and smooth stimuli. The results show that humans use a greater variation in contact force for the smooth stimuli than for the rough stimuli. Moreover, they use higher scanning velocities and shorter break times between stimuli in the discrimination task than in the identification task. Thus, in roughness perception humans spontaneously use different strategies that seem effective for the perceptual task and the stimuli. A control task, in which the participants just explore the stimuli without any perceptual objective, shows that humans use a smaller contact force and a lower scanning velocity for the rough stimuli than for the smooth stimuli. Possibly, these strategies are related to aversiveness while exploring stimuli

    The neural basis of perceived intensity in natural and artificial touch

    Get PDF
    Electrical stimulation of sensory nerves is a powerful tool for studying neural coding because it can activate neural populations in ways that natural stimulation cannot. Electrical stimulation of the nerve has also been used to restore sensation to patients who have suffered the loss of a limb. We have used long-term implanted electrical interfaces to elucidate the neural basis of perceived intensity in the sense of touch. To this end, we assessed the sensory correlates of neural firing rate and neuronal population recruitment independently by varying two parameters of nerve stimulation: pulse frequency and pulse width. Specifically, two amputees, chronically implanted with peripheral nerve electrodes, performed each of three psychophysical tasks-intensity discrimination, magnitude scaling, and intensity matching-in response to electrical stimulation of their somatosensory nerves. We found that stimulation pulse width and pulse frequency had systematic, cooperative effects on perceived tactile intensity and that the artificial tactile sensations could be reliably matched to skin indentations on the intact limb. We identified a quantity we termed the activation charge rate (ACR), derived from stimulation parameters, that predicted the magnitude of artificial tactile percepts across all testing conditions. On the basis of principles of nerve fiber recruitment, the ACR represents the total population spike count in the activated neural population. Our findings support the hypothesis that population spike count drives the magnitude of tactile percepts and indicate that sensory magnitude can be manipulated systematically by varying a single stimulation quantity

    Smoothing a rugged protein folding landscape by sequence-based redesign

    Get PDF
    The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as α1\alpha_1-antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create conserpin\textit{conserpin}, a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics.BTP is a Medical Research Council Career Development Fellow. AAN and JJH are supported by the Wellcome Trust (grant number WT 095195). SM acknowledges fellowship support from the Australian Research Council (FT100100960). NAB is an Australian Research Council Future Fellow (110100223). GIW is an Australian Research Council Discovery Outstanding Researcher Award Fellow (DP140100087). AMB is a National Health and Medical Research Senior Research Fellow (1022688). JCW is an NHMRC Senior Principal Research fellow and also acknowledges the support of an ARC Federation Fellowship. We thank the Australian Synchrotron for beam-time and technical assistance. This work was supported by the Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE) (www.massive.org.au). We acknowledge the Monash Protein Production Unit and Monash Macromolecular Crystallization Facilit

    Smoothing a rugged protein folding landscape by sequence-based redesign

    Get PDF
    The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as α1-antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create conserpin, a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics

    Evaluating a Second Life PBL Demonstrator Project: What Can We Learn?

    Get PDF
    This article reports the findings of a demonstrator project to evaluate how effectively Immersive Virtual Worlds (IVWs) could support Problem-based Learning. The project designed, created and evaluated eight scenarios within Second Life (SL) for undergraduate courses in health care management and paramedic training. Evaluation was primarily qualitative, using illuminative evaluation which provided multiple perspectives through interviews, focus groups and questionnaires with designers, facilitators, learning technologists and students. Results showed that SL provided a rich, engaging environment which enhanced authenticity of the scenarios, though there were issues of access and usability. The article concludes by drawing together the lessons learned which will inform educators who seek to design and develop learning scenarios in this medium
    • 

    corecore