56 research outputs found

    First insights into chlorhexidine retention in the oral cavity after application of different regimens

    Get PDF
    Objectives This in situ study aimed to determine and compare the chlorhexidine (CHX) retention in the oral cavity after the application of different CHX pharmaceutical regimens. Methods Five volunteers used different CHX treatment regimens including mouth rinses, dental spray and toothpaste gel. After the application of the different CHX regimens, 2-μl samples were taken from saliva and buccal mucosa pellicle as well as the dental pellicle samples formed on standardized enamel surfaces. Sample collection was conducted at six time points within 12 h. Retention of CHX was measured using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Results CHX retention values in the oral mucosa pellicle were significantly higher than those in saliva. CHX remained in the mucosal pellicle at microgrammes per millilitre levels for 12 h after mouth rinsing, 10 h after spray application and 2 h after using the toothpaste. CHX was detected in the dental pellicle for at least 12 h after application of mouth rinsing and spray. Retention of CHX after mouth rinsing or spray application was significantly higher than the retention after using toothpaste. Conclusions Oral mucosa was the favourable site for CHX retention. Higher mouth rinse concentration and longer rinsing time produced a slight increase in CHX retention. CHX spray provided considerable retention values, whereas toothpaste gel delivered the lowest retention after application. MALDI-TOF was a sensitive method with excellent limits of quantification for CHX detection

    NIR-Emitting Gold Nanoclusters-Modified Gelatin Nanoparticles as a Bioimaging Agent in Tissue

    Get PDF
    Gold nanocluster (AuNC) synthesis using a well-distinguished polymer for nanoparticle-mediated drug delivery paves the way for developing efficient theranostics based on pharmaceutically accepted materials. Gelatin-stabilized AuNCs are synthesized and modified by glutathione for tuning the emission spectra. Addition of silver ions enhances the fluorescence, reaching also high quantum yield (26.7%). A simplified model can be proposed describing the nanoclusters' properties-structure relationship based on X-ray photoelectron spectroscopy data and synthesis sequence. Furthermore, these modifications improve fluorescence stability toward pH changes and enzymatic degradation, offering different AuNCs for various applications. The impact of nanocluster formation on gelatin structure integrity is investigated by Fourier transform infrared spectrometry and matrix-assisted laser desorption/ionization time of flight mass spectroscopy, being important to further formulate gelatin nanoparticles (GNPs). The 218 nm-sized NPs show no cytotoxicity up to 600 µg mL-1 and are imaged in skin, as a challenging autofluorescent tissue, by confocal microscopy, when transcutaneously delivered using dissolving microneedles. Linear unmixing allows simultaneous imaging of AuNCs-GNPs and skin with accurate signal separation. This underlines the great potential for bioimaging of this system to better understand nanomaterials' behavior in tissue. Additionally, it is drug delivery system also potentially serving as a theranostic system

    N-acetylation and phosphorylation of Sec complex subunits in the ER membrane.

    Get PDF
    BACKGROUND: Covalent modifications of proteins provide a mechanism to control protein function. Here, we have investigated modifications of the heptameric Sec complex which is responsible for post-translational protein import into the endoplasmic reticulum (ER). It consists of the Sec61 complex (Sec61p, Sbh1p, Sss1p) which on its own mediates cotranslational protein import into the ER and the Sec63 complex (Sec63p, Sec62p, Sec71p, Sec72p). Little is known about the biogenesis and regulation of individual Sec complex subunits. RESULTS: We show that Sbh1p when it is part of the Sec61 complex is phosphorylated on T5 which is flanked by proline residues. The phosphorylation site is conserved in mammalian Sec61ß, but only partially in birds, and not in other vertebrates or unicellular eukaryotes, suggesting convergent evolution. Mutation of T5 to A did not affect the ability of mutant Sbh1p to complement the growth defect in a Δsbh1Δsbh2 strain, and did not result in a hypophosphorylated protein which shows that alternate sites can be used by the T5 kinase. A survey of yeast phosphoproteome data shows that Sbh1p can be phosphorylated on multiple sites which are organized in two patches, one at the N-terminus of its cytosolic domain, the other proximal to the transmembrane domain. Surprisingly, although N-acetylation has been shown to interfere with ER targeting, we found that both Sbh1p and Sec62p are cotranslationally N-acetylated by NatA, and N-acetyl-proteome data indicate that Sec61p is modified by the same enzyme. Mutation of the N-acetylation site, however, did not affect Sec62p function in posttranslational protein import into the ER. Disabling NatA resulted in growth retardation, but not in co- or posttranslational translocation defects or instability of Sec62p or Sbh1p. CONCLUSIONS: We conclude that N-acetylation of transmembrane and tail-anchored proteins does not interfere with their ER-targeting, and that Sbh1p phosphorylation on T5, which is not present in Sbh2p, plays a non-essential role specific to the Sec61 complex.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    NIR‐Emitting Gold Nanoclusters–Modified Gelatin Nanoparticles as a Bioimaging Agent in Tissue

    Get PDF
    Gold nanocluster (AuNC) synthesis using a well‐distinguished polymer for nanoparticle‐mediated drug delivery paves the way for developing efficient theranostics based on pharmaceutically accepted materials. Gelatin‐stabilized AuNCs are synthesized and modified by glutathione for tuning the emission spectra. Addition of silver ions enhances the fluorescence, reaching also high quantum yield (26.7%). A simplified model can be proposed describing the nanoclusters\u27 properties–structure relationship based on X‐ray photoelectron spectroscopy data and synthesis sequence. Furthermore, these modifications improve fluorescence stability toward pH changes and enzymatic degradation, offering different AuNCs for various applications. The impact of nanocluster formation on gelatin structure integrity is investigated by Fourier transform infrared spectrometry and matrix‐assisted laser desorption/ionization time of flight mass spectroscopy, being important to further formulate gelatin nanoparticles (GNPs). The 218 nm‐sized NPs show no cytotoxicity up to 600 µg mL−1 and are imaged in skin, as a challenging autofluorescent tissue, by confocal microscopy, when transcutaneously delivered using dissolving microneedles. Linear unmixing allows simultaneous imaging of AuNCs–GNPs and skin with accurate signal separation. This underlines the great potential for bioimaging of this system to better understand nanomaterials\u27 behavior in tissue. Additionally, it is drug delivery system also potentially serving as a theranostic system

    Classification of Ancient Mammal Individuals Using Dental Pulp MALDI-TOF MS Peptide Profiling

    Get PDF
    International audienceBackground The classification of ancient animal corpses at the species level remains a challenging task for forensic scientists and anthropologists. Severe damage and mixed, tiny pieces originating from several skeletons may render morphological classification virtually impossible. Standard approaches are based on sequencing mitochondrial and nuclear targets. Methodology/Principal Findings We present a method that can accurately classify mammalian species using dental pulp and mass spectrometry peptide profiling. Our work was organized into three successive steps. First, after extracting proteins from the dental pulp collected from 37 modern individuals representing 13 mammalian species, trypsin-digested peptides were used for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The resulting peptide profiles accurately classified every individual at the species level in agreement with parallel cytochrome b gene sequencing gold standard. Second, using a 279-modern spectrum database, we blindly classified 33 of 37 teeth collected in 37 modern individuals (89.1%). Third, we classified 10 of 18 teeth (56%) collected in 15 ancient individuals representing five mammal species including human, from five burial sites dating back 8,500 years. Further comparison with an upgraded database comprising ancient specimen profiles yielded 100% classification in ancient teeth. Peptide sequencing yield 4 and 16 different non-keratin proteins including collagen (alpha-1 type I and alpha-2 type I) in human ancient and modern dental pulp, respectively. Conclusions/Significance Mass spectrometry peptide profiling of the dental pulp is a new approach that can be added to the arsenal of species classification tools for forensics and anthropology as a complementary method to DNA sequencing. The dental pulp is a new source for collagen and other proteins for the species classification of modern and ancient mammal individuals

    Phylogenetic Position of a Copper Age Sheep (Ovis aries) Mitochondrial DNA

    Get PDF
    BACKGROUND: Sheep (Ovis aries) were domesticated in the Fertile Crescent region about 9,000-8,000 years ago. Currently, few mitochondrial (mt) DNA studies are available on archaeological sheep. In particular, no data on archaeological European sheep are available. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the first portion of mtDNA sequence of a Copper Age European sheep. DNA was extracted from hair shafts which were part of the clothes of the so-called Tyrolean Iceman or Ötzi (5,350-5,100 years before present). Mitochondrial DNA (a total of 2,429 base pairs, encompassing a portion of the control region, tRNA(Phe), a portion of the 12S rRNA gene, and the whole cytochrome B gene) was sequenced using a mixed sequencing procedure based on PCR amplification and 454 sequencing of pooled amplification products. We have compared the sequence with the corresponding sequence of 334 extant lineages. CONCLUSIONS/SIGNIFICANCE: A phylogenetic network based on a new cladistic notation for the mitochondrial diversity of domestic sheep shows that the Ötzi's sheep falls within haplogroup B, thus demonstrating that sheep belonging to this haplogroup were already present in the Alps more than 5,000 years ago. On the other hand, the lineage of the Ötzi's sheep is defined by two transitions (16147, and 16440) which, assembled together, define a motif that has not yet been identified in modern sheep populations

    Earliest evidence for the ivory trade in southern Africa : isotopic and ZooMS analysis of seventh-tenth century AD ivory from KwaZulu-Natal

    Get PDF
    KwaGandaganda, Ndondondwane and Wosi were major Early Farming Community settlements in what is today the KwaZulu-Natal province of South Africa. These sites have yielded, among other remains, abundant evidence of ivory and ivory working dating to the seventh–tenth centuries ad, pre-dating by approximately 200 years the better-known ivory artefacts from sites in the Limpopo River Valley and surrounding regions. We report the results of carbon, nitrogen and strontium isotope analysis to explore the origins and procurement of this ivory, in combination with Zooarchaeology by Mass Spectrometry (ZooMS) to identify the species of animals from which it was derived. All of the ivory studied using ZooMS was elephant, despite the presence of hippopotamus remains on all three sites. Some ivory was probably obtained from elephant herds that lived close to the sites, in the densely wooded river valleys favoured by both elephants and early farmers. Other material came from savannah environments further afield. Ivory found at these three sites was drawn from different catchments, implying a degree of landscape/resource partitioning even at this early stage. These communities clearly invested substantial effort in obtaining ivory from across the region, which speaks to the importance of this commodity in the economy of the time. We suggest that some ivory items were for local use, but that some may have been intended for more distant markets via Indian Ocean trade

    Amphoteric surfactant N-oleoyl-N-methyltaurine utilized by Pseudomonas alcaligenes with excretion of N-methyltaurine

    No full text
    The amphoteric surfactant N-oleoyl-N-methyltaurine, which is in use in skin-care products, was utilized by aerobic bacteria as the sole source of carbon or of nitrogen in enrichment cultures. One isolate, which was identified as Pseudomonas alcaligenes, grew with the xenobiotic compound as the sole source of carbon and energy. The sulfonate moiety, N-methyltaurine, was excreted quantitatively during growth, while the fatty acid was dissimilated. The initial degradative reaction was shown to be hydrolytic and inducible. This amidase reaction could be demonstrated with crude cell extracts. The excreted N-methyltaurine could be utilized by other bacteria in cocultures. Complete degradation of similar natural compounds in bacterial communities seems likely
    corecore