565 research outputs found

    N-Terminal Pro–B-Type Natriuretic Peptide in the Emergency Department: The ICON-RELOADED Study

    Get PDF
    Background Contemporary reconsideration of diagnostic N-terminal pro–B-type natriuretic peptide (NT-proBNP) cutoffs for diagnosis of heart failure (HF) is needed. Objectives This study sought to evaluate the diagnostic performance of NT-proBNP for acute HF in patients with dyspnea in the emergency department (ED) setting. Methods Dyspneic patients presenting to 19 EDs in North America were enrolled and had blood drawn for subsequent NT-proBNP measurement. Primary endpoints were positive predictive values of age-stratified cutoffs (450, 900, and 1,800 pg/ml) for diagnosis of acute HF and negative predictive value of the rule-out cutoff to exclude acute HF. Secondary endpoints included sensitivity, specificity, and positive (+) and negative (−) likelihood ratios (LRs) for acute HF. Results Of 1,461 subjects, 277 (19%) were adjudicated as having acute HF. The area under the receiver-operating characteristic curve for diagnosis of acute HF was 0.91 (95% confidence interval [CI]: 0.90 to 0.93; p < 0.001). Sensitivity for age stratified cutoffs of 450, 900, and 1,800 pg/ml was 85.7%, 79.3%, and 75.9%, respectively; specificity was 93.9%, 84.0%, and 75.0%, respectively. Positive predictive values were 53.6%, 58.4%, and 62.0%, respectively. Overall LR+ across age-dependent cutoffs was 5.99 (95% CI: 5.05 to 6.93); individual LR+ for age-dependent cutoffs was 14.08, 4.95, and 3.03, respectively. The sensitivity and negative predictive value for the rule-out cutoff of 300 pg/ml were 93.9% and 98.0%, respectively; LR− was 0.09 (95% CI: 0.05 to 0.13). Conclusions In acutely dyspneic patients seen in the ED setting, age-stratified NT-proBNP cutpoints may aid in the diagnosis of acute HF. An NT-proBNP <300 pg/ml strongly excludes the presence of acute HF

    The Role of SIRT1 in Skeletal Muscle Function and Repair of Older Mice

    Get PDF
    Background Sirtuin 1 (SIRT1) is a NAD+ sensitive deacetylase that has been linked to longevity and has been suggested to confer beneficial effects that counter aging-associated deterioration. Muscle repair is dependent upon satellite cell function, which is reported to be reduced with aging; however, it is not known if this is linked to an aging-suppression of SIRT1. This study tested the hypothesis that Sirtuin 1 (SIRT1) overexpression would increase the extent of muscle repair and muscle function in older mice. Methods We examined satellite cell dependent repair in tibialis anterior, gastrocnemius, and soleus muscles of 13 young wild-type mice (20–30 weeks) and 49 older (80+ weeks) mice that were controls (n = 13), overexpressed SIRT1 in skeletal muscle (n = 14), and had a skeletal muscle SIRT1 knockout (n = 12) or a satellite cell SIRT1 knockout (n = 10). Acute muscle injury was induced by injection of cardiotoxin (CTX), and phosphate-buffered saline was used as a vector control. Plantarflexor muscle force and fatigue were evaluated before or 21 days after CTX injection. Satellite cell proliferation and mitochondrial function were also evaluated in undamaged muscles. Results Maximal muscle force was significantly lower in control muscles of older satellite cell knockout SIRT1 mice compared to young adult wild-type (YWT) mice (P \u3c 0.001). Mean contraction force at 40 Hz stimulation was significantly greater after recovery from CTX injury in older mice that overexpressed muscle SIRT1 than age-matched SIRT1 knockout mice (P \u3c 0.05). SIRT1 muscle knockout models (P \u3c 0.05) had greater levels of p53 (P \u3c 0.05 MKO, P \u3c 0.001 OE) in CTX-damaged tissues as compared to YWT CTX mice. SIRT1 overexpression with co-expression of p53 was associated with increased fatigue resistance and increased force potentiation during repeated contractions as compared to wild-type or SIRT1 knockout models (P \u3c 0.001). Muscle structure and mitochondrial function were not different between the groups, but proliferation of satellite cells was significantly greater in older mice with SIRT1 muscle knockout (P \u3c 0.05), but not older SIRT1 satellite cell knockout models, in vitro, although this effect was attenuated in vivo after 21 days of recovery. Conclusions The data suggest skeletal muscle structure, function, and recovery after CTX-induced injury are not significantly influenced by gain or loss of SIRT1 abundance alone in skeletal muscle; however, muscle function is impaired by ablation of SIRT1 in satellite cells. SIRT1 appears to interact with p53 to improve muscle fatigue resistance after repair from muscle injury

    ROS Promote Epigenetic Remodeling and Cardiac Dysfunction in Offspring Following Maternal Engineered Nanomaterial (ENM) Exposure

    Get PDF
    Background: Nano-titanium dioxide (nano-TiO2) is amongst the most widely utilized engineered nanomaterials (ENMs). However, little is known regarding the consequences maternal ENM inhalation exposure has on growing progeny during gestation. ENM inhalation exposure has been reported to decrease mitochondrial bioenergetics and cardiac function, though the mechanisms responsible are poorly understood. Reactive oxygen species (ROS) are increased as a result of ENM inhalation exposure, but it is unclear whether they impact fetal reprogramming. The purpose of this study was to determine whether maternal ENM inhalation exposure influences progeny cardiac development and epigenomic remodeling. Results: Pregnant FVB dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.09 ± 0.26 mg/m3 starting at gestational day five (GD 5), for 6 h over 6 non-consecutive days. Aerosol size distribution measurements indicated an aerodynamic count median diameter (CMD) of 156 nm with a geometric standard deviation (GSD) of 1.70. Echocardiographic imaging was used to assess cardiac function in maternal, fetal (GD 15), and young adult (11 weeks) animals. Electron transport chain (ETC) complex activities, mitochondrial size, complexity, and respiration were evaluated, along with 5-methylcytosine, Dnmt1 protein expression, and Hif1α activity. Cardiac functional analyses revealed a 43% increase in left ventricular mass and 25% decrease in cardiac output (fetal), with an 18% decrease in fractional shortening (young adult). In fetal pups, hydrogen peroxide (H2O2) levels were significantly increased (~ 10 fold) with a subsequent decrease in expression of the antioxidant enzyme, phospholipid hydroperoxide glutathione peroxidase (GPx4). ETC complex activity IV was decreased by 68 and 46% in fetal and young adult cardiac mitochondria, respectively. DNA methylation was significantly increased in fetal pups following exposure, along with increased Hif1α activity and Dnmt1 protein expression. Mitochondrial ultrastructure, including increased size, was observed at both fetal and young adult stages following maternal exposure. Conclusions: Maternal inhalation exposure to nano-TiO2 results in adverse effects on cardiac function that are associated with increased H2O2 levels and dysregulation of the Hif1α/Dnmt1 regulatory axis in fetal offspring. Our findings suggest a distinct interplay between ROS and epigenetic remodeling that leads to sustained cardiac contractile dysfunction in growing and young adult offspring following maternal ENM inhalation exposure

    Long‐term surveillance biopsy: Is it necessary after pediatric heart transplant?

    Full text link
    Due to limited and conflicting data in pediatric patients, long‐term routine surveillance endomyocardial biopsy (RSB) in pediatric heart transplant (HT) remains controversial. We sought to characterize the rate of positive RSB and determine factors associated with RSB‐detected rejection. Records of patients transplanted at a single institution from 1995 to 2015 with >2 year of post‐HT biopsy data were reviewed for RSB‐detected rejections occurring >2 year post‐HT. We illustrated the trajectory of significant rejections (ISHLT Grade ≄3A/2R) among total RSB performed over time and used multivariable logistic regression to model the association between time and risk of rejection. We estimated Kaplan‐Meier freedom from rejection rates by patient characteristics and used the log‐rank test to assess differences in rejection probabilities. We identified the best‐fitting Cox proportional hazards regression model. In 140 patients, 86% did not have any episodes of significant RSB‐detected rejection >2 year post‐HT. The overall empirical rate of RSB‐detected rejection >2 year post‐HT was 2.9/100 patient‐years. The percentage of rejection among 815 RSB was 2.6% and remained stable over time. Years since transplant remained unassociated with rejection risk after adjusting for patient characteristics (OR = 0.98; 95% CI 0.78‐1.23; P = 0.86). Older age at HT was the only factor that remained significantly associated with risk of RSB‐detected rejection under multivariable Cox analysis (P = 0.008). Most pediatric patients did not have RSB‐detected rejection beyond 2 years post‐HT, and the majority of those who did were older at time of HT. Indiscriminate long‐term RSB in pediatric heart transplant should be reconsidered given the low rate of detected rejection.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147767/1/petr13330_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147767/2/petr13330.pd

    Crystal structure of the mitochondrial protein mitoNEET bound to a benze-sulfonide ligand

    Get PDF
    MitoNEET (gene cisd1) is a mitochondrial outer membrane [2Fe-2S] protein and is a potential drug target in several metabolic diseases. Previous studies have demonstrated that mitoNEET functions as a redox-active and pH-sensing protein that regulates mitochondrial metabolism, although the structural basis of the potential drug binding site(s) remains elusive. Here we report the crystal structure of the soluble domain of human mitoNEET with a sulfonamide ligand, furosemide. Exploration of the high-resolution crystal structure is used to design mitoNEET binding molecules in a pilot study of molecular probes for use in future development of mitochondrial targeted therapies for a wide variety of metabolic diseases, including obesity, diabetes and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease

    Crystal Structure of the Mitochondrial Protein mitoNEET Bound to a Benze-sulfonide Ligand

    Get PDF
    MitoNEET (gene cisd1) is a mitochondrial outer membrane [2Fe-2S] protein and is a potential drug target in several metabolic diseases. Previous studies have demonstrated that mitoNEET functions as a redox-active and pH-sensing protein that regulates mitochondrial metabolism, although the structural basis of the potential drug binding site(s) remains elusive. Here we report the crystal structure of the soluble domain of human mitoNEET with a sulfonamide ligand, furosemide. Exploration of the high-resolution crystal structure is used to design mitoNEET binding molecules in a pilot study of molecular probes for use in future development of mitochondrial targeted therapies for a wide variety of metabolic diseases, including obesity, diabetes and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease

    Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer.

    Get PDF
    Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer

    Tests of the Equivalence Principle with Neutral Kaons

    Get PDF
    We test the Principle of Equivalence for particles and antiparticles, using CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time, we search for possible annual, monthly and diurnal modulations of the observables |eta_{+-}| and phi_{+-}, that could be correlated with variations in astrophysical potentials. Within the accuracy of CPLEAR, the measured values of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the gravitational potential. We analyze data assuming effective scalar, vector and tensor interactions, and we conclude that the Principle of Equivalence between particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9}, respectively, for scalar, vector and tensor potentials originating from the Sun with a range much greater than the distance Earth-Sun. We also study energy-dependent effects that might arise from vector or tensor interactions. Finally, we compile upper limits on the gravitational coupling difference between K0 and K0bar as a function of the scalar, vector and tensor interaction range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl) incorporate

    Machine-learning to Stratify Diabetic Patients Using Novel Cardiac Biomarkers and Integrative Genomics

    Get PDF
    Background: Diabetes mellitus is a chronic disease that impacts an increasing percentage of people each year. Among its comorbidities, diabetics are two to four times more likely to develop cardiovascular diseases. While HbA1c remains the primary diagnostic for diabetics, its ability to predict long-term, health outcomes across diverse demographics, ethnic groups, and at a personalized level are limited. The purpose of this study was to provide a model for precision medicine through the implementation of machine-learning algorithms using multiple cardiac biomarkers as a means for predicting diabetes mellitus development. Methods: Right atrial appendages from 50 patients, 30 non-diabetic and 20 type 2 diabetic, were procured from the WVU Ruby Memorial Hospital. Machine-learning was applied to physiological, biochemical, and sequencing data for each patient. Supervised learning implementing SHapley Additive exPlanations (SHAP) allowed binary (no diabetes or type 2 diabetes) and multiple classifcation (no diabetes, prediabetes, and type 2 diabetes) of the patient cohort with and without the inclusion of HbA1c levels. Findings were validated through Logistic Regression (LR), Linear Discriminant Analysis (LDA), Gaussian NaĂŻve Bayes (NB), Support Vector Machine (SVM), and Classifcation and Regression Tree (CART) models with tenfold cross validation. Results: Total nuclear methylation and hydroxymethylation were highly correlated to diabetic status, with nuclear methylation and mitochondrial electron transport chain (ETC) activities achieving superior testing accuracies in the predictive model (~84% testing, binary). Mitochondrial DNA SNPs found in the D-Loop region (SNP-73G, -16126C, and -16362C) were highly associated with diabetes mellitus. The CpG island of transcription factor A, mitochondrial (TFAM) revealed CpG24 (chr10:58385262, P=0.003) and CpG29 (chr10:58385324, P=0.001) as markers correlating with diabetic progression. When combining the most predictive factors from each set, total nuclear methylation and CpG24 methylation were the best diagnostic measures in both binary and multiple classifcation sets. Conclusions: Using machine-learning, we were able to identify novel as well as the most relevant biomarkers associated with type 2 diabetes mellitus by integrating physiological, biochemical, and sequencing datasets. Ultimately, this approach may be used as a guideline for future investigations into disease pathogenesis and novel biomarker discover

    Clinical and Research Considerations for Patients with Hypertensive Acute Heart Failure

    Get PDF
    Management approaches for patients in the emergency department (ED) who present with acute heart failure (AHF) have largely focused on intravenous diuretics. Yet, the primary pathophysiologic derangement underlying AHF in many patients is not solely volume overload. Patients with hypertensive AHF (H-AHF) represent a clinical phenotype with distinct pathophysiologic mechanisms that result in elevated ventricular filling pressures. To optimize treatment response and minimize adverse events in this subgroup, we propose that clinical management be tailored to a conceptual model of disease based on these mechanisms. This consensus statement reviews the relevant pathophysiology, clinical characteristics, approach to therapy, and considerations for clinical trials in ED patients with H-AHF
    • 

    corecore