322 research outputs found
Five-loop \sqrt\epsilon-expansions for random Ising model and marginal spin dimensionality for cubic systems
The \sqrt\epsilon-expansions for critical exponents of the weakly-disordered
Ising model are calculated up to the five-loop order and found to possess
coefficients with irregular signs and values. The estimate n_c = 2.855 for the
marginal spin dimensionality of the cubic model is obtained by the Pade-Borel
resummation of corresponding five-loop \epsilon-expansion.Comment: 9 pages, TeX, no figure
Joint Probability Analysis of Extreme Precipitation and Water Level for Chicago, Illinois
A compound flooding event occurs when there is a combination of two or more extreme factors that happen simultaneously or in quick succession and can lead to flooding. In the Great Lakes region, it is common for a compound flooding event to occur with a high lake water level and heavy rainfall. With the potential of increasing water levels and an increase in precipitation under climate change, the Great Lakes coastal regions could be at risk for more frequent and severe flooding. The City of Chicago which is located on Lake Michigan has a high population and dense infrastructure and is very vulnerable to a compound flooding event, even with the implementation of its water control structures. For this case study, annual maximum precipitation and corresponding lake water level data were analyzed to examine the bivariate return period of a compound flood event using a copula function. The results show that under climate change if the water level were to rise by 0.2, 0.45, or 0.8 m, compound flooding events due to heavy precipitation and high water level will be more likely in the future. By documenting the joint risk of potential compound flooding in this area, preventative measures and planning can be implemented
In search of lost introns
Many fundamental questions concerning the emergence and subsequent evolution
of eukaryotic exon-intron organization are still unsettled. Genome-scale
comparative studies, which can shed light on crucial aspects of eukaryotic
evolution, require adequate computational tools.
We describe novel computational methods for studying spliceosomal intron
evolution. Our goal is to give a reliable characterization of the dynamics of
intron evolution. Our algorithmic innovations address the identification of
orthologous introns, and the likelihood-based analysis of intron data. We
discuss a compression method for the evaluation of the likelihood function,
which is noteworthy for phylogenetic likelihood problems in general. We prove
that after preprocessing time, subsequent evaluations take time almost surely in the Yule-Harding random model of -taxon
phylogenies, where is the input sequence length.
We illustrate the practicality of our methods by compiling and analyzing a
data set involving 18 eukaryotes, more than in any other study to date. The
study yields the surprising result that ancestral eukaryotes were fairly
intron-rich. For example, the bilaterian ancestor is estimated to have had more
than 90% as many introns as vertebrates do now
Therapeutic Effects of Connective Tissue Manipulation on Wound Healing and Bacterial Colonization Count among Patients with Diabetic Foot Ulcer
This study investigated the therapeutic effects of connective tissue manipulation (CTM) in diabetic foot ulcer (DFU). A total of 20 participants (10 in CTM group and 10 in conventional treatment group (CG)) with DFU underwent the conventional DFU treatment. In addition, the CTM group received CTM twice per week for 6 weeks. The percentage wound area reduction (PWAR) and bacterial colonization count (BCC) in log10 colony-forming units (CFU) per ml wound fluid was evaluated at baseline and six weeks. Results showed a significant change in PWAR in CTM (p<0.05, t = 3.82, Df = 9, CI L= 0.98 U=3.81) and CG (p<0.05, t = 2.97, Df = 9,CI L= 0.26 U=1.98). Mean reduction of BCC showed a significant reduction (p<0.05), with percentage of BCC reduction higher in CTM group (6.45%) than CG (3.55%). The findings suggest CTM as an effective adjunct therapy for DFU to enhance conventional treatments
Self-Averaging, Distribution of Pseudo-Critical Temperatures and Finite Size Scaling in Critical Disordered Systems
The distributions of singular thermodynamic quantities in an ensemble
of quenched random samples of linear size at the critical point are
studied by Monte Carlo in two models. Our results confirm predictions of
Aharony and Harris based on Renormalization group considerations. For an
Ashkin-Teller model with strong but irrelevant bond randomness we find that the
relative squared width, , of is weakly self averaging. , where is the specific heat exponent and is the
correlation length exponent of the pure model fixed point governing the
transition. For the site dilute Ising model on a cubic lattice, known to be
governed by a random fixed point, we find that tends to a universal
constant independent of the amount of dilution (no self averaging). However
this constant is different for canonical and grand canonical disorder. We study
the distribution of the pseudo-critical temperatures of the ensemble
defined as the temperatures of the maximum susceptibility of each sample. We
find that its variance scales as and NOT as
R_\chi\sim 70R_\chi (T_c)\chiT_c(i,l)m_i(T_c,l)T_c(i,l)(T-T_c(i,l))/T_c$. This function is found to be universal and to behave
similarly to pure systems.Comment: 31 pages, 17 figures, submitted to Phys. Rev.
Sound waves, diffusive transport, and wall slip in nanoconfined compressible fluids
Although continuum theories have been proven quite robust to describe
confined fluid flow at molecular length scales, molecular dynamics (MD)
simulations reveal mechanistic insights into the interfacial dissipation
processes. Most MD simulations of confined fluids have used setups in which the
lateral box size is not much larger than the gap height, thus breaking
thin-film assumptions usually employed in continuum simulations. Here, we
explicitly probe the long wavelength hydrodynamic correlations in confined
simple fluids with MD and compare to gap-averaged continuum theories as
typically applied in e.g. lubrication. Relaxation times obtained from
equilibrium fluctuations interpolate between the theoretical limits from bulk
hydrodynamics and continuum formulations with increasing wavelength. We show
how to exploit this characteristic transition to measure viscosity and slip
length in confined systems simultaneously from equilibrium MD simulations.
Moreover, the gap-averaged theory describes a geometry-induced dispersion
relation that leads to overdamped sound relaxation at large wavelengths, which
is confirmed by our MD simulations. Our results add to the understanding of
transport processes under strong confinement and might be of technological
relevance for the design of nanofluidic devices due to the recent progress in
fabrication methods.Comment: 17 pages, 11 figure
Sound waves, diffusive transport, and wall slip in nanoconfined compressible fluids
Although continuum theories have been proven quite robust to describe confined fluid flow at molecular length scales, molecular dynamics (MD) simulations reveal mechanistic insights into the interfacial dissipation processes. Most MD simulations of confined fluids
have used setups in which the lateral box size is not much larger than the gap height, thus breaking thin-film assumptions usually employed in continuum simulations. Here we explicitly probe the long-wavelength hydrodynamic correlations in confined simple fluids
with MD and compare to gap-averaged continuum theories as typically applied in, e.g., lubrication. Relaxation times obtained from equilibrium fluctuations interpolate between the theoretical limits from bulk hydrodynamics and continuum formulations with increasing
wavelength. We show how to exploit this characteristic transition to measure viscosity and slip length in confined systems simultaneously from equilibrium MD simulations. Moreover, the gap-averaged theory describes a geometry-induced dispersion relation that
leads to overdamped sound relaxation at large wavelengths, which is confirmed by our MD simulations. Our results add to the understanding of transport processes under strong confinement and might be of technological relevance for the design of nanofluidic devices
Entwicklung einer Multiskalenmethode für die Simulation von Schmierprozessen
Reibung und Schmierung sind Multiskalenprobleme, d.h. Prozesse auf unterschiedlichen Zeit- und Längenskalen beeinflussen einander und bestimmen die makroskopische Antwort eines Systems. Für Schmierungsprozesse trifft dies insbesondere im Grenzreibungsbereich zu, in dem die Dicke des Schmierspalts in der Größenordnung molekularer Interaktionslängen liegt. Makroskopische Schmierungsmodellierung basiert fast ausschließlich auf der Anwendung der Reynoldsgleichung, während auf atomarer Skala vermehrt Molekulardynamik-Simulationen in den Vordergrund treten. Multiskalenmethoden für Schmierungsphänomene, die über sequentielle Ansätze hinausgehen, sind bisher noch nicht etabliert. Im Rahmen dieser Arbeit wird ein Multiskalenansatz vorgestellt, welcher die Lösung der makroskopischen Bilanzgleichungen in ein Mikro- und Makroproblem aufteilt. Das Makroproblem entsteht durch Mittelung der Bilanzgleichungen über der Spalthöhe, ähnlich zur konventionellen Reynoldsgleichung, und wird mittels expliziter Finite-Volumen-Diskretisierung gelöst, während das Mikroproblem das konstitutive Verhalten des Schmierfilms enthält. Die numerische Implementierung des Makroproblems wird mithilfe gewöhnlicher Konstitutivgesetze validiert und anhand konkreter Beispiele wird gezeigt, dass diese in Zukunft durch Molekulardynamik-Simulationen ersetzt werden können. Außerdem lassen sich analytische Lösungen der linearisierten Grundgleichungen des Makroproblems herleiten, die mit Autokorrelationsfunktionen fluktuierender Zustandsvariablen aus Molekulardynamik-Simulationen verglichen werden. Daraus ergibt sich eine Methode zur simultanen Bestimmung von Viskosität und Schlupflänge aus Gleichgewichts-Simulationen, sowie die Beschreibung des überkritischen Schalltransports in Fluidspalten. Für eine effiziente Umsetzung des vorgestellten Multiskalenansatzes wird eine Ersatzmodellierung benötigt, die zwischen einzelnen Mikrosimulationen interpoliert. Anhand von einfachen Beispielen wird das Anwendungspotential der Gaußprozess-Regression als mögliches Ersatzmodell evaluiert. Die vorliegende Arbeit liefert somit die theoretischen Grundlagen einer simultanen Multiskalensimulation von Schmierungsprozessen, welche in Zukunft zu einem besseren Verständnis der Dissipationsmechanismen im Grenzreibungsbereich beitragen kann
- …
