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Abstract 

A compound flooding event occurs when there is a combination of two or more extreme 

factors that happen simultaneously or in quick succession and can lead to flooding. In the 

Great Lakes region, it is common for a compound flooding event to occur with a high 

lake water level and heavy rainfall. With the potential of increasing water levels and an 

increase in precipitation under climate change, the Great Lakes coastal regions could be 

at risk for more frequent and severe flooding. The City of Chicago which is located on 

Lake Michigan has a high population and dense infrastructure and is very vulnerable to a 

compound flooding event, even with the implementation of its water control structures. 

For this case study, annual maximum precipitation and corresponding lake water level 

data were analyzed to examine the bivariate return period of a compound flood event 

using a copula function. The results show that under climate change if the water level 

were to rise by 0.2, 0.45, or 0.8 m, compound flooding events due to heavy precipitation 

and a high water level will be more likely in the future. By documenting the joint risk of 

potential compound flooding in this area, preventative measures and planning can be 

implemented.  
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1 Introduction 

The Laurentian Great Lakes are one of the largest stores of surface fresh water in the 

world located in the United States and Canada. The Great Lakes, which consists of five 

lakes, are considered to be like “inland seas” because of their characteristics including 

bathymetry gradient, deep depths, and extensive size (Huang et al., 2021). Climate trends 

of the Great Lakes and surrounding areas have been observed in recent decades, and 

concerns continue to rise about future climate change impacts to the area. There is strong 

scientific evidence that climate change is a result of human activities mostly related to the 

increase in greenhouse gas (GHG) emissions, like burning fossil fuels (IPCC, 2022). 

Because of the increasing GHG emissions, it is impacting lake evaporation, ice cover, 

and lake stratification in some of the world’s largest lakes (O’Reilly et al., 2015; Austin 

et al., 2007; Xue et al., 2022; Hayhoe et al., 2010; Mason et al., 2016; Anderson et al., 

2021). Globally, from 1985 to 2009, the mean lake summer surface water temperatures 

have increased about 0.34°C per decade (O’Reilly et al., 2015). When examining 

seasonal ice cover, from 1973 to 2010, there has been a decrease in ice cover by 71 

percent between the five Great Lakes (Wang et al., 2012). The Great Lakes basin air 

temperature has also increased and is expected to increase to the end of the century 

(Wuebbles et al., 2019). With an increase in air and surface water temperature, more 

evaporation can occur producing moisture laden air, generating an increase in heavy 

precipitation. Because of the interdependency between a multitude of weather and 

climate variables, the slightest change in precipitation patterns can lead to long-term 

impacts in an area. 

Precipitation in the Great Lakes region is also expected to increase and become more 

variable. From 1901 to 2015, the Great Lakes region experienced about a 10 percent 

increase in annual precipitation, usually in the form of large precipitation events 

(Wuebbles et al., 2019). With a high GHG emission scenario, Chicago could receive up 

to 30 percent more precipitation in the spring and winter by the end of the century 

(Hayhoe et al., 2010). Based on different emission scenarios, it is also predicted that by 

the mid-21st century (2030–2049) precipitation could increase between 0% to 13% and 

by the late-21st century (2080–2099) precipitation could increase between 9% to 32% 

(Xue et al., 2022). Similarly, in the future (2045–2060), the Great Lakes region could 

experience about a 7 percent increase in average rainfall intensity per ℃ of surface 

warming based on a high emission scenario (d’Orgeville, 2014). Increase in precipitation 

could greatly affect flood probabilities in the future. 

Amidst escalated precipitation events, there has also been increased lake level variability 

in the Great Lakes region. Over the last 60 years, the water level in the Great Lakes 

region was in a high-water level regime followed by a period of record low water level, 

until around 2013 when water levels started to rise again (Lofgren et al., 2002; 

Gronewold & Stow, 2014; Gronewold & Rood, 2018). The 2013–2014 water level rise 

was attributed to increase in spring runoff and persistent precipitation, the continuation of 

water level rise is driven by a combination of above average overlake precipitation and 
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runoff (Gronewold et al., 2016, 2021). In 2020, the water level was so high that Lake 

Superior, Lake Michigan-Huron, and Lake Erie all reached new record-high mean water 

levels multiple times, and numerous areas experienced shore flooding and erosion (2020 

Annual Climate Trends and Impacts). Recent studies have suggested a further increase in 

lake water level with projected climate change (Kayastha et al., 2022).  

In addition to the large water level variability on the seasonal and climatic scales, the 

Great Lakes are also susceptible to surges. Surges are driven by meteorological factors 

like strong winds or sudden changes in atmospheric pressure, they happen frequently in 

the Great Lakes and can cause the water level to rise by many feet. A storm surge in the 

Great Lakes could last all day and can range from 1 to 8 feet high (Wisconsin Sea Grant, 

2022). In the future, an increase in storm intensity and duration and a decrease in ice 

cover could also lead to an increase frequency in storm surges. Increases in storm surge 

and high-water level could negatively impact aquatic vegetation communities and 

shoreline wetlands (Wuebbles et al., 2019). With an increase in precipitation and higher 

water levels, the addition of a surge could greatly increase the potential for a compound 

flooding event.  

The Intergovernmental Panel on Climate Change defines a compound event to be either 

(1) two or more extreme events occurring simultaneously or successively, (2) 

combinations of extreme events with underlying conditions that amplify the impact of the 

events, or (3) combinations of events that are not themselves extreme but lead to an 

extreme event or impact when combined (Seneviratne et al., 2012). There is a growing 

concern that due to climate change, compound flooding events will be more likely in the 

future. This is particularly true for the coastal cities along the Great Lakes coastline. The 

goal of this study is to examine the probabilities of compound flood events happening in 

Chicago, Illinois because of heavy rainfalls and high-water levels. Observational annual 

maximum rainfall data from 1982–2021 with the corresponding daily mean water level 

will be used and the probability will be examined by applying a copula function and 

generating return periods. While examining the joint probability of a compound flood 

event occurring because of surge and precipitation has already been studied, to our 

knowledge this is the first study to analyze rainfall and water level and look at potential 

increase under climate change for the Chicago area. For flood risk management and 

reduction, it is important to understand and analyze the potential cause of flooding. With 

the dense population and high infrastructure, the downtown Chicago area could be 

greatly impacted if a compound flood event were to occur. By documenting the joint risk 

of potential compound flooding in this area, preventative measures and planning can be 

implemented.  

2 Study Area and Data 

Chicago is located in the northeastern corner of Illinois and lies on Lake Michigan, one 

out of the five Great Lakes. It is home to 2.69 million people and is the third-largest city 

in the United States (U.S. Census Bureau, 2020). Chicago is one of the hotspots that 

receives growing concern of flood impacts because of the high population density and the 
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high amount of impervious surface that makes up the bustling city. Chicago has a long 

history of flooding since the 1800s. Chicago has been built in a flat area of prairie 

wetlands, and is naturally prone to flooding because the City sits on an impervious layer 

of clay leading to poor drainage (Brosnan, 2020). In the early 1800’s to the mid-1900’s 

Chicago faced many severe floods and water quality issues because of the combined 

sewer and storm water system. Since 1945 Chicago has had more damaging floods 

caused by suburban sprawl and climate change (Brosnan, 2020). From 2019 to 2021 the 

National Weather Service has listed 17 flooding events for the area of Chicago. While 

FEMA has identified about 1,500 properties located in a flood hazard area, a new report 

estimated that 77,000 properties might be at risk (Grunderson, 2020). 

The Chicago River runs through the city and is 28 miles long, it previously discharged 

into Lake Michigan before its reversal in the 1900s, and now drains into the Mississippi 

River. The Chicago River is part of the Chicago Area Waterway System (CAWS), that 

consists of more than 100 miles of man-made channels and former natural streams that 

have been modified by dredging, straightening, widening and realigning (MWRDGC). 

The heavily engineered CAWS was constructed from 1892 to 1965 to accommodate 

growing population and public health concerns (Lanyon et al., 2013). CAWS consists of 

locks, dams, and ports and is used for recreational and commercial transportation. 

Through CAWS, the Metropolitan Water Reclamation District of Greater Chicago 

(MWRD) can readily regulate the water levels. In the past, Chicago flooding has caused 

environmental and economic damage, from 2007 to 2014 there was at least $2.319 billion 

in documented damages for northeastern Illinois according to the 2015 Illinois 

Department of Natural Resources. Under climate change, Chicago could face more 

unpredicted storms that would result in flooding (Markus et al., 2012).  

To mitigate flooding risk, Chicago has an underground reservoir system, implemented 

under the Tunnel and Reservoir Plan (TARP) that can store excess water for heavy 

rainfall events that might cause flooding. The MWRD is in charge of regulating the water 

level and can reverse the flow of the Chicago River to discharge into Lake Michigan 

during major flood events. The Chicago River water level height is extensively monitored 

by MWRD and has four different control structures to regulate the water level. The 

Chicago River water level usually stays around 2 feet below the Chicago City Datum (0 

ft). Backflows into Lake Michigan occur if the river water level reaches about 3.5 feet 

above the city datum, which is about 5.5 feet higher than normal. However, the MWRD 

is only able to reverse the flow if the water level in the river is higher than the lake level.  

On 17 May 2020, MWRD was unable to reverse the river flow due to a high amount of 

precipitation received leading up to the event and a high lake level. It was not until the 

evening of 17 May 2020, MWRD was finally able to reverse the flow. However, because 

the lake water level was so high, MWRD had to open and close the sluice gate multiple 

times until the river water level decreased. This event caused flooding downtown and 

electrical power outages throughout the city. Some factors that might cause backflows are 

timing, hydraulic properties of the channels, distribution of precipitation, and the 

operation of the control structures (Duncker & Johnson, 2016). Figure 1, shows the 
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increase in backflows per year from 1985–2021. When backflows occur, untreated 

sewage flows back into Lake Michigan, causing negative environmental impacts and 

public health concerns to Lake Michigan.  

2.1 Data Collection 

The rainfall data for this study was obtained from 1982 to 2021(excluding 1996) from the 

National Oceanic and Atmospheric Administration Online Weather Data (NOWData). 

The data set consisted of the annual precipitation maxima from the Chicago Midway 

Airport 3 SW (111577) rain gauge station. The Chicago Midway Airport is South of 

O’Hare International Airport located in Cook County (Figure 2). This rain gauge station 

offered the most complete data set, where about 16% of the daily observational record 

was marked as a “T”, for trace amounts of precipitation that wet the rain gauge but was 

less than 0.01 inches and there were no missing data.  

The water level dataset was extracted using water level data from NOAA at the Calumet 

Harbor, IL Station (9087044) shown in Figure 2. The corresponding daily mean water 

levels were extracted using the observational hourly water level data and obtaining the 

mean water level for the same day as the annual maximum precipitation event. This 

dataset consists of 39 years because the year of 1996 is sufficiently incomplete at the 

Calumet Harbor station.  

 

Figure 1. Reversals from the Chicago Area Waterway System to Lake Michigan from 

1985–2021 with a linear regression trend line (y = 47.73x - 9437, R2=0.039). Data 

provided by the Metropolitan Water Reclamation District of Greater Chicago. 
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Figure 2. Study site location (a) Cook County in the state of Illinois, USA. (b) Close up 

of Cook County with the precipitation and water level gauge stations used for this study.  

3 Methodology 
3.1 Marginal Distributions 

The marginal distributions that suitably fit the data need to be obtained. The distributions 

tested in this study were Normal (NORM), Lognormal (LNORM), Weibull (WEIB), 

Gamma (GAMM), Gumbel (GUMB) and Generalized Extreme Distribution (GEV). The 

parameters for the distributions were obtained using the maximum likelihood method 

(MLE). For each data value MLE maximizes the summation of logarithms of the 

probability density to estimate the parameters for a chosen distribution (Asquith et al., 

2017). MLE was chosen to estimate parameters because of its consistency and tendency 

to show less biases compared to other methods (Chen et al. 2017). As guidance to the 

best distribution, the Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC), Anderson-Darling (A-D), Kolmogorov-Smirnov (K-S) test and Cramer Von Mises 

(CVM) were used. When distributions had similar goodness of fit, a P-P plot was used to 

visually complement the aforementioned metrics. 

AIC and BIC are standard goodness of fit tests. They can be expressed as:  

AIC = 2k - 2ln(L)                                           (1) 

BIC = kln(n) -2ln(L)                           (2) 

where k represents the number of independent variables, L is the log-likelihood estimate 

and n are the number of observations. AIC and BIC are both ways to score models based 
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on their complexity and their log-likelihood. There is slight variation between the two 

tests, BIC penalizes model parameters more than AIC, which results in fewer complex 

models being favored. Both AIC and BIC were implemented in this study because neither 

one is better than the other and they should both produce similar results. AIC and BIC are 

both standard goodness of fit tests, they may not be the best for fitting data that has high 

asymmetrical distributions or a small sample size (Liao et al., 2009), but in some cases 

each can be helpful for identifying the best model (Chen et al., 2017).  

 

K-S, A-D, and CVM are all non-parametric hypothesis-based model selection techniques.  

All three tests produce a test statistic that represents the difference between the empirical 

and theoretical cumulative distribution functions, which results in a smaller test statistic 

being more favorable. The null hypothesis being tested for the K-S, A-D and CVM is that 

the data follows a specified distribution. To reject the null hypothesis, the test statistic 

produced would have to be greater than the critical value. For K-S and CVM the critical 

value is determined by the significance level (𝛼 = 0.05) and the number of data points. 

For the A-D test, the critical value is determined by the significance level (𝛼 = 0.05) and 

the type of distribution (Pettit, 1976; Stephens, 1979). The A-D test is similar to the K-S 

test but gives more weight to the tails, which is important to note when analyzing 

hydrologic frequency analysis (Zeng et al., 2015). A-D and CVM are alternatives to K-S 

and tend to be more powerful than the K-S test.  

 

3.2 Copula 

Copulas have become increasingly popular, used for examining the joint probability of 

hydrologic data (Chen & Guo, 2019; Salvadori & De Michele, 2007). A copula is a 

multivariate distribution function that is used to show the relationship between two or 

more variables based on their marginal distributions. The notion of copula is based on 

Sklar’s theorem, which states that any multivariate joint distribution can be written in 

terms of univariate marginal distribution functions and a copula which describes the 

dependence structure between the variables (Sklar, 1959). If X and Y represent two 

random variables, then their marginal cumulative distribution functions would be 

u = Fₓ(x) and v=FY(y)                                                                                                         (3) 

F(x,y) = C(u,v) = C(FX(x), FY(y))                            (4) 

Where C(u,v) is the copula function when u and v are continuous. Copulas offer a more 

flexible way to explore nonlinear correlation and dependencies with multiple variables 

and distributions (Zellou et al., 2019; Xu et al., 2019). There are many different families 

of copulas but for hydrologic analysis Archimedean copulas, which only require one 

parameter, are more often being employed (Wang et al., 2017). Copulas allow variables 

to transform from the probability state space of [0,1] to [0,∞] and then using an inverse 

generator function transform the variable back to [0,1]. This allows copulas to show the 

relations between multiple variables and their joint probability. 
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Using copulas for multivariate analysis for compound events has been widely 

implemented. For example, analyzing the joint probability of storm surge and heavy 

rainfall for major U.S coastal cities (Wahl et al., 2015) and similarly, heavy rainfall and 

storm tides (Xu et al., 2014; Xu et al., 2019). There have also been numerous case studies 

conducted on specific sites looking at multivariate compound flood events using copulas, 

such as in south Florida (Jane et al., 2020), Buffalo, New York (Saharia et al. 2021), 

Ravenna, Italy (Bevacqua et al., 2017), Fuzhou City, China (Lian et al., 2013), 

Netherlands (Hurk et al., 2015), and Canada’s Coast (Pirani et al., 2020).  

In this study, four Archimedean copulas are tested, Gumbel, Clayton, Frank, and Joe. The 

common bivariate copula functions are listed in Table 1. The maximum likelihood 

method was used to estimate the parameters for the copulas. 

Table 1. Common bivariate copula functions (Xu et al., 2019, Saharia et al., 2021). 

 

3.3 Return Period 

The general equation for return period is as follows: 

𝑅𝑃 =
𝑇

𝐸
                             (5) 

where the return period (RP) for an event is the expected time interval (T) over the annual 

exceedance probability of an event occurring (E). For annual maximum events T would 

be one year. Flooding could occur when there is either a high amount of precipitation (R) 

or high water level (S) that might exceed a certain threshold. To look at the joint 

probability using the copula function, AND, and OR return period events were estimated. 

The AND joint probability, P ⋂ (r,s), refers to the probability of heavy rainfall and high 

water level event that would happen simultaneously. The OR joint probability, P ⋃ (r,s), 

refers to the probability that either rainfall or water level would exceed its threshold value 

and cause flooding. The AND joint return period, T ⋂ (r,s) equation and the OR joint 

return period, T ⋃ (r,s)  are as follows: 
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𝑇 ∩ (𝑟, 𝑠) =
1

𝑃∩(𝑟,𝑠)
=

1

𝑃((𝑅>𝑟)∩(𝑆>𝑠))
=

1

1−𝐹(𝑟)−𝐹(𝑠)+𝐹(𝑟,𝑠)
                                            (6) 

 𝑇 ∪ (𝑟, 𝑠) =
1

𝑃∪(𝑟,𝑠)
=

1

𝑃((𝑅>𝑟)∪(𝑆>𝑠))
=

1

1−𝐹(𝑟,𝑠)
                                                        (7)  

Where, F(r,s) is the joint distribution of rainfall and water level based on the copula 

output and F(r) and F(s) are the marginal distributions for precipitation and water level 

respectively. 

 

4 Results  

Kendall’s tau correlation coefficient is a non-parametric measure of the relationship 

between two variables based their ordinal association, where values range from 0 to 1 and 

a value closer to 1 is ideal. The Kendall’s tau between annual maximum rainfall and 

corresponding water level is 0.114 (n = 39). The results reveal that there is a weak but 

statistically significant (𝛼 = 0.05) correlation between the variables. The dependence 

between the two hydrologic variables should be taken into account when looking at flood 

probability to ensure a more accurate return period output.  

4.1 Marginal Distributions 

Table 2 lists the output for testing goodness of fit for the candidate distributions. The 

parameters for each distribution were fit using MLE. The best distribution would display 

the lowest AIC, BIC value and pass the K-S, A-D and CVM tests. As stated above, the 

K-S, A-D and CVM are all non-parametric tests that compare the difference between the 

empirical and theoretical cumulative distribution functions; a small value represents how 

close the distributions are to one another. To pass all of the tests, the test statistic had to 

be smaller than the critical value. For the K-S test, the critical value with a 95% 

confidence level is 0.217 for a sample size of 39. All of the distributions pass the K-S test 

with the highest K-S D statistic value being 0.119. GEV was the chosen distribution for 

rainfall. The GEV distribution produced the lowest K-S D statistic for rainfall with a K-S 

D statistic of 0.076. The CVM critical value was 0.461, based on a significance level of 

𝛼=0.05 and 39 data points. All of the distributions passed the CVM test, the Weibull 

distribution for water level produced the largest test statistic of 0.123, which is still fairly 

below the threshold. The critical values for A-D are based on significance (alpha = 0.5) 

and the chosen distribution, the critical values used are shown in Table 3. For the selected 

distributions, they all pass the A-D test, with the exception of the Weibull and GEV 

distribution for the water level data. 

When distributions had similar goodness of fit, a P-P plot was used to visually identify 

the best fit. Figure 3, shows the P-P plots of the distributions chosen by comparing the 

empirical and theoretical probabilities. The root mean square error (RMSE) is also 

shown, which displays the difference between the observed and predicted values. The 
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RMSE results confirm that GEV and Gumbel (a special case of the GEV) are sufficient 

choices for the rainfall and water level data respectively. The RMSE for the rainfall data 

was 0.0265 and the RMSE for the water level data was 0.0389.  

While many papers only use only two or three goodness of fit tests, there are some 

drawbacks because some goodness of fit tests tend to favor certain distributions. The 

hope was to eliminate any underlying bias, by using multiple goodness of fit tests for this 

study. Based on the results, it was common for a particular distribution to have the lowest 

AIC and BIC values, but did not yield the lowest A-D, K-S and CVM values. For 

example, when looking at the GEV distribution for water level, it produced one of the 

lowest A-D, K-S and CVM values, but one of the highest AIC and BIC values. Laio et al. 

(2009) also mentions similar results, where they found that AIC and BIC produce similar 

model selection when compared to Anderson-Darling Criterion, which is based on the 

Anderson-Darling test statistic. They also found that BIC and AIC tend to favor 

distributions with fewer parameters. This might be the reason that some of the 

distribution results favored AIC and BIC but contrasted with the A-D, K-S, and CVM. 

With that being said, for choosing the best distribution, there was more emphasis on 

passing the A-D, K-S and CVM, while also examining which test produced the smaller 

test statistic. In this study, multiple goodness fit tests were performed by aiming to 

minimize any underlying bias. 

Table 2. Marginal Distribution goodness of fit tests for rainfall and water level. 
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Table 3. Critical values for K-S, CVM and A-D goodness of fit tests. 

 

 

Figure 3. P-P plot of best marginal distribution for (a) rainfall and (b) water level.  

4.2 Copula 

Archimedean copulas are very suitable for modeling extreme events because of their 

ability to capture various dependence structures and only require one parameter (Hofert, 

2008). Four Archimedean copulas were tested, Gumbel, Clayton, Frank, and Joe to 

construct the joint distribution between rainfall and water level. The parameters for each 

copula were calculated using MLE. AIC, BIC, and LogLik were used to test the goodness 

of fit for the different copulas (Table 4).  The best fit was determined by the lowest AIC 

and BIC value and the highest LogLik value. Frank copula was the best fit and resulted in 

the lowest AIC and BIC values of 1.19 and 2.86 respectively. Frank copula also had the 

largest Loglik value of 0.4. 
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Table 4. Joint distribution goodness of fit for rainfall and water level. 

 

4.3 Return Period 

The T-year joint return period for rainfall and water level can be useful for flood planning 

and mitigation strategies for the future. The “OR” Return Period represents the likelihood 

that either rainfall or water level will meet the threshold shown in Table 5 for the 

designated univariate return period. The “AND” Return Period represents the likelihood 

that both rainfall and water level will meet the predicted rainfall and water level threshold 

value.  

The univariate RP is larger than the OR RP and smaller than the AND RP. This indicates 

that the univariate RP does not provide complete information about the different factors 

in flood risk (Xu et al., 2019). For example, looking at rainfall and water level for a 10-

year univariate RP, the OR RP is 5.35 years and the AND RP is 72 years. This means that 

when using a copula function, the probability of water level or rainfall exceeding the 

threshold, there is a greater chance of “flooding” than when examining just one variable. 

When looking at the daily observational data from 1982 to 2021, the predicted 50-year 

rainfall of 123.6 mm with a water level of 177.83 m, has not occurred jointly in the past. 

For reference, the long-term average water level in Lake Michigan is around 176.5 m 

(USACE). In fact, out of the 39 years of reliable data available, there have only been five 

days of rainfall over 100 mm. It is easy to observe how a slight change in rainfall can 

impact the OR and AND Return Period. For instance, when looking at the 5-year RP, 

rainfall is 95.82 mm and a water level of 176.94 m, predicts AND RP of 19.3 years. With 

an increase of 10.49 mm (0.41 inches) of rain and an increase of 0.28 m of water level, 

the AND RP jumps to 72 years. Figure 4 shows the contour plots for OR RP and AND 

RP. The OR case is important because it establishes that flooding could be more frequent 

due to either heavy precipitation or high water levels. 
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Table 5. Rainfall and water level OR and AND return periods for 2, 5, 10, 20, and 50 

years.  

 

 

Figure 4. Contour plot of the joint return periods for the OR scenario (left) and the AND 

scenario (right).  
 

4.3.1 May 17 Event 
Table 6 shows the total amount of daily rainfall and daily mean water level leading up to 

and after the May 17th event. When looking at the 17th of May event, there was 100.33 

mm of rain and a mean lake water level of 177.55 m, this falls between the 10 to 20-year 

univariate RP shown in Table 5. The univariate RP for 100.33 mm of rainfall is about 14 

years, while the univariate RP for 177.55 m water level is around 24 years.  When 

examining the RP for both of these values using the copula function the OR RP was 6.11 

years and the RP for them to occur jointly was 318 years. When looking at the historical 

observational data, the May 17th event is also the only event with water level and rainfall 

at that magnitude to have occurred over the course of 39 years, indicating it was a highly 

extreme and rare occurrence. 
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Table 6. Daily total rainfall at Midway Airport Station and daily mean water level for 

May 14, 2020 to May 19, 2020.   

 

 
 

4.3.2 Climate Change 
Based on Kayastha et al. (2022), there is a predicted increase of water level due to an 

increase in over-lake precipitation and basin runoff with a potential increase in lake 

evaporation. Using the Great Lakes-Atmosphere Regional Model (GLARM; Xue et al., 

2017, 2022), the mean water level of Lake Michigan is projected to increase by 0.44 m to 

possibly 0.8 m from 2040–2049 in Lake Michigan. Using the May 17th event values as an 

indicator that a reversal event may be able to happen when a major flooding might occur, 

the daily mean water level of 177.55 m can be looked at as a threshold, when the water 

level is at or above 177.55 m, a flooding event might occur. When considering climate 

change, if the climatological mean water level were to increase by 0.2 m while 

interannual and seasonal variability is assumed to remain the same as shown in historic 

observational data, an adjusted threshold of 177.35 m would need to be reached for a 

flood event to occur in the future. Table 7 lists the predicted OR RP and AND RP under 

climate change with the assumption that water levels could increase by 0.2, 0.45, and 0.8 

m, respectively. As water level increases the AND RP decreases, implicating that 

flooding is more likely to occur in the future under climate changes. Based on historical 

conditions, such an event is estimated to have a return period of 318 years, however, with 

a changing climate, such a compound event may occur much more frequently, and return 

periods may be as short as 15.2 to 66.9 years depending on the future water level rise.  

Table 7. Predicted OR RP and AND RP under climate change.  
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5 Discussion and Conclusion 
There are two types of reversals into Lake Michigan, gate reversals and lock reversals. 

Gate reversals are when there is a smaller volume of water, while lock reversals allow a 

greater volume of water flow into Lake Michigan and usually occur during severe storm 

events (MWRD). Table 8 lists the reversals from the Chicago Area Waterway system 

(CAWS) into Lake Michigan, with the amount of effluent discharge from the Chicago 

River Controlling Works (CRCW) control structure. There are four different control 

structures in CAWS. The CRCW control structure was chosen because of its central 

location in downtown Chicago and is the location of interest for the May 17th event. 

During the 17th of May Chicago flood event, MWRD was unable to reverse the river 

flow due to a high amount of precipitation and a high lake level, the precipitation 

received on May 17th was 110.33 mm and the daily mean water level was 177.55 m. One 

article stated that in addition, if a two-foot storm surge (0.609 m) were to happen, the 

Chicago lock itself might be useless (Egan, 2021). This event was used to drive the 

research question and examine the joint probability of this event happening again or more 

frequently under climate change. Which can even be applied to examining if reversal 

events will increase in the future.  While in communication with a public affairs specialist 

at Metropolitan Water Reclamation District of Greater Chicago (MWRD), he made it 

clear that the length of a rainfall event and water level of Lake Michigan does not trigger 

a reversal, it is based on how much water enters the CAWS. However, it can be inferred 

that perhaps longer rainfall events do cause more water to enter the CAWS and with the 

fluctuations of lake water level, there is the great potential for more frequent flooding and 

reversals in the future. With a higher lake water level MWRD might be unable to reverse 

the flow of the river causing overflow of the CAWS contributing to more extreme 

flooding events. 

For this study, annual maximum rainfall and corresponding mean daily water levels were 

examined to estimate the joint probability of the occurrence of high water level and 

rainfall event. Analysis on two-, three- and four-day cumulative rainfall was also 

examined, because many severe storm events happen over a course of more than 24 

hours. However, when looking at annual maximum cumulative rainfall and 

corresponding water level, the correlations were weak and resulted in a poor RP output 

when applying the copula function. Cumulative rainfall should still be considered for 

future analysis with a larger data set, which may lead to enhanced reliability. The MWRD 

(who control the water levels in CAWS) have their own set of rain gauges that they use, 

with data only available from 2016 to present. For a more accurate RP output, it would be 

helpful to use their rain gauge data when there is more extensive observational data 

available. 
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Table 8. Reversals to Lake Michigan from the Chicago Area Waterway System from 

1985–2021 (Data from MWRD).  

 

Overall, copulas are a powerful tool that can be used to analyze joint probability for 

extreme hydrological events. The methods outlined could be applied to other areas to 

evaluate flooding potential. Chicago is a large metropolitan area that is of high concern of 

flood risk due to the amount of infrastructure and the high population density. While the 

TARP project is still underway, Chicago still can face major flood risk in the future, 

especially under climate change. By using observational data to analyze joint probability, 

a better understanding can be developed for the area in terms of high precipitation and 

high water level. While it is still uncertain what the future will hold under climate 

change, copulas can be used as a simple predictive tool. Chicago has an underground 

reservoir system, implemented under the Tunnel and Reservoir Plan (TARP) that can 

store excess water for heavy rainfall events that might cause flooding. There are two 

phases to this project; the first phase was completed in 2006. Phase II is currently 

underway with two out of the three reservoirs complete and the third is expected to be 

completed in 2029 (MWRD). With the completion of Phase II, it would add 15.15 billion 

gallons of storage for combined sewer overflows. But MWRD states that it could still be 

possible for the system to reach capacity during an extreme storm event. 
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